• 제목/요약/키워드: Tool performance

검색결과 4,174건 처리시간 0.034초

Development of data analysis tool for combat system integration

  • Shin, Seung-Chun;Shin, Jong-Gye;Oh, Dae-Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.147-160
    • /
    • 2013
  • System integration is an important element for the construction of naval combat ships. In particular, because impeccable combat system integration together with the sensors and weapons can ensure the combat capability and survivability of the ship, the integrated performance of the combat system should be verified and validated whether or not it fulfills the requirements of the end user. In order to conduct systematic verification and validation, a data analysis tool is requisite. This paper suggests the Data Extraction, Recording and Analysis Tool (DERAT) for the data analysis of the integrated performance of the combat system, including the functional definition, architecture and effectiveness of the DERAT by presenting the test results.

The Effect of Machining Parameters on Tool Electrode Edge Wear and Machining Performance in Electric Discharge Machining (EDM)

  • Cogun, Can;Akaslan, S.
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.46-59
    • /
    • 2002
  • The main purpose of this study is to investigate the variation of tool electrode edge wear and machining performance outputs, namely, the machining rate (workpiece removal rate), tool wear rate and the relative wear, with the varying machining parameters (pulse time, discharge current and dielectric flushing pressure) in EDM die sinking. The edge wear profiles obtained are modeled by using the circular arcs, exponential and poller functions. The variation of radii of the circular arcs with machining parameters is given. It is observed that the exponential function models the edge wear profiles of the electrodes, very accurately. The variation of exponential model parameters with machining parameters is presented.

새로운 디버링 공구를 이용한 드릴링 버의 효율적 제거를 위한 가공조건 선정 (Determination of Cutting Conditions for an Efficient Deburring Process Using a New Deburring Tool)

  • 배준경;박하영;권병찬;고성림
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.109-117
    • /
    • 2016
  • For efficient deburring of burrs that form inside mechanical parts after drilling, new special deburring tool was developed specifically for the burr found at intersecting holes. In this paper, the process for finding ideal cutting conditions has been carried out to identify the efficient performance of deburring using a new tool. The burrs at the entrance and exit surface were analyzed for efficient removal. The surface roughness after deburring was also reviewed for better performance. In addition, the influence of the feed rate on deburring quality was analyzed for improved productivity. Through this process, a new deburring tool can be applied effectively to remove burrs formed at intersecting holes.

A Study on Silicon Nitride Based Ceramic Cutting Tool Materials

  • Park, Dong-Soo
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.78-86
    • /
    • 1995
  • The silicon nitride based ceramic cutting tool materials have been fabricated by gas pressure sintering (GPS) or hot pressing (HP). Their mechanical properties were measured and the effect of the fabrication variables on the properties were examined. Also, effect of adding TiN or TiC particulates on the mechanical properties of the silicon nitride ceramics were investigated. Ceramic cutting tools (ISO 120408) were made of the sintered bodies. Cutting performance test were performed on either conventional or NC lathe. The workpieces were grey cast iron, hardened alloy steel (AISI 4140, HRc>60) and Ni-based superalloy (Inconel 718). The results showed that fabrication variables, namely, sintering temperature and time, exerted a strong influence on the microstincture and mechanical properties of the sintered body, which, however, did not make much difference in wear resistance of the tools. High hardness of the tool containing TiC particulates exhibited good cutting performance. Extensive crater wear was observed on both monolithic and TiN-containing silicon nitride tools after cutting the hardened alloy steel. Inconel 718 was extremely difficult to cut by the current cutting tools.

금형용 고경도재의 고속정면밀링 가공시 CBN 공구의 성능에 관한 연구 (A Study on the Performance of CBN Tools in the Machining of Hardened Die-Materials by High-Speed face Milling)

  • 조성실;임근영;김태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.26-30
    • /
    • 1996
  • This paper presents the performance of CBN tools in the machining of hardened die-materials, SKD11 and SKD61 steel with HRC 50, by high-speed face milling. Generally, grinding or EDM is being used in machining of hardened materials but the cost is very high. If those can be replaced by cutting, it will be a greatly economical advantage. CBN tool has been recognized as an effective tool in turning, but it has not been in milling. So wear and surface roughness mode of CBN tool for hardened SKD11 and SKD61 steel were investigated by high-speed face milling in this study Also the relation between cutting force and wear mode of CBN tools was investigated.

  • PDF

공학교육인증에서 교과기반평가를 위한 설계도구 개발 및 적용 (Development and Implementation of Design Tool for Course-Embedded Assessment in the Engineering Education Accreditation)

  • 김영탁;김창학;정재우
    • 공학교육연구
    • /
    • 제19권2호
    • /
    • pp.70-75
    • /
    • 2016
  • This paper deals with a result of case study for the development of CEA(Course-Embedded Assessment) design tool for engineering education accreditation implementing programs. Many programs have been devoting efforts to apply CEA to their engineering education. In order to effectively apply the CEA to educational program, it is required to develop the standardized form or scheme for CEA application. As a preliminary approach, we propose the design tool and the result of a case study for CEA application in engineering education.

볼 엔드밀 헬릭스 각에 따른 절삭 특성 (Cutting Characteristics of Ball-end Mill with Different Helix Angle)

  • 조철용;류시형
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.395-401
    • /
    • 2014
  • Development of five axis tool grinding machine and CAD/CAM systems increase tool design flexibility. In this research, investigated are cutting characteristics of ball-end mill with different helix angle. Special WC ball-end mills with $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ helix angles are designed and used in various cutting tests. Machining performance according to helix angle variation is evaluated from cutting forces, surface roughness, tool wear, produced chip shape, and vibration characteristics. The ball-end mill with $10^{\circ}$ helix angle shows the best cutting performance due to appropriate chip load distribution and smooth chip flow. This research can be used for cutting edge geometry optimization and novel design of ball-end mill.

Powder Metallurgical Tool Steel Solutions for Powder Pressing and Other High-performance Cold Work Applications

  • Schemmel, Ingrid;Marsoner, Stefan;Makovec, Heinz
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.841-843
    • /
    • 2006
  • In high-performance cold work applications, tool failure depends on the predominating loading conditions. Typical failure mechanisms are a combination of abrasive wear, adhesive wear, plastic deformation, cracking and edge crumbling. In this paper we demonstrate how the microstructure of tool steels can be positively influenced by modifying the alloying system and the production route to meet the demands of the different loading situations which occur during operation. The investigation was focused on ductility, fatigue strength and wear resistance. Theoretical considerations were confirmed by practical tests.

  • PDF

EPIQR+를 이용한 구청사 건물에 대한 경제적, 에너지관점에서의 건물 재평가 (A Study on Process for District Office Building Maintenance with EPIQR+ (on Focusing Energy and Economics Evaluation))

  • 김태한
    • KIEAE Journal
    • /
    • 제9권5호
    • /
    • pp.13-20
    • /
    • 2009
  • This study suggested practical application of decision aid tool on re-evaluation of current buildings with a focus on a energy and economics evaluation methodology. In Europe, over forty percent of all construction activities are for retrofit. For efficient construction, various tools for re-evaluating existing buildings have been developed and are in use. Legislations of relevant laws and studies are actively initiated. In particular, EPIQR (Energy Performance Indoor environment Quality Retrofit), which was developed through the EU's Third and Fourth Framework Programs laid a foundation on a new concept-based decision aid tool for re-evaluation of existing buildings. As for actual applications, based on this, EPIQR+ was developed to be in line with a building maintenance guideline (SIA 469) and is actively applied to public buildings. This tool quantifies the degree of damages of existing buildings and suggests alternatives to users in energy (SIA 380/1) and economical perspectives. This study examined these preceding tools and suggested some trenchant approaching for more comprehensive and efficient use of re-evaluation tools in building maintenance.

AL6061 소재의 홀 가공 시 버 제거를 위한 초경합금 접합 디버링 공구 개발 (Development of a Cemented Carbide-Welded Deburring Tool for Burr Removal in Drill Holes of AL6061 Workpieces)

  • 사민우;이재원
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.1-7
    • /
    • 2021
  • In recent years, automated process technology has allowed for the rapid manufacturing of metal parts. Maintaining high product quality is of vital importance during the production of these parts. Surface defects occurring after processing can compromise their assembly precision and performance. In this study, a deburring tool was developed that can remove burrs generated from drilling. Through the evaluation of processing, burrs were completely removed at entrance and exit surfaces. Therefore, this newly developed deburring tool shows better performance than deburring tools currently in use.