• 제목/요약/키워드: Tool misalignment

검색결과 21건 처리시간 0.031초

병렬기구형 공작기졔의 기구학적 보정에 관한 연구 (Study on Kinematic Calibration of a Parallel-typed Machining Center Tool)

  • 이민기;김태성;박근우
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2237-2244
    • /
    • 2002
  • This research develops a low-cost and high accuracy kinematic calibration method based on the following principles: 1) the platform locations are accurately measured by a constrained movement to inspect a calibration target; 2) the constrained movement is chosen to guarantee the parameter observability; 3) the mechanical fixture to constrain the movement and the sensor to check the constrained movement are implemented by low-cost and high-accuracy devices; 4) the calibration is easily done at an industrial environment. The kinematic parameters calibrated with respect to a single plane aren't influenced due to the misalignment of the plane. A parameter observability is successfully obtained even through one planar constraint, which guarantees that all kinematic parameters are estimated by minimizing the cost function.

Straingage법에 의한 정적 상태에서의 회전체 축정렬 방법 개선 (Improvement of Rotor Axes Arrangement under the Static State by using Straingage Method)

  • 김경석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.117-122
    • /
    • 1998
  • The misalignment state causes some problems in operating. These problems such as vibration, noise, make the reduce wear, as well as, a stress concentration on the coupling which is the very weakness point at the morter. In order to align the shaft, the dialgage method has used as a means of solution until now. The method using a dialgage require a great deal of labour and money due to making by hand, the accurate alignment is not up to the expectation. For aligning the shaft, all the rotor must come to accord. Also, the dialgage method cannot be compared with straingage measurement method, from the viewpoint, which can gage in short time.

  • PDF

Bi-spectrum for identifying crack and misalignment in shaft of a rotating machine

  • Sinha, Jyoti K.
    • Smart Structures and Systems
    • /
    • 제2권1호
    • /
    • pp.47-60
    • /
    • 2006
  • Bi-spectrum is a tool in the signal processing for identification of non-linear dynamic behvaiour in systems, and well-known for stationary system where components are non-linearly interacting. Breathing of a crack during shaft rotation is also exhibits a non-linear behaviour. The crack is known to generate 2X (twice the machine RPM) and higher harmonics in addition to 1X component in the shaft response during its rotation. Misaligned shaft also shows similar such feature as a crack in a shaft. The bi-spectrum method has now been applied on a small rotating rig to observe its features. The bi-spectrum results are found to be encouraging to distinguish these faults based on few experiments conducted on a small rig. The results are presented here.

자기조직화 특징지도를 이용한 회전기계의 이상진동진단 (Abnormal Vibration Diagnosis of rotating Machinery Using Self-Organizing Feature Map)

  • 서상윤;임동수;양보석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.317-323
    • /
    • 1999
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal vibration diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised teaming algorithm is used to improve the quality of the classifier decision regions.

  • PDF

배열형 섬광결정을 이용한 소형 감마카메라의 평행구멍형 조준기 최적화 연구 (Optimization of Parallel-Hole Collimator for Small Gamma Camera Based on Pixellated Crystal Array)

  • 정용현;백철하;이승재;박진형
    • 한국의학물리학회지:의학물리
    • /
    • 제19권4호
    • /
    • pp.291-297
    • /
    • 2008
  • 이 연구의 목적은 몬테칼로 모사방법을 이용하여 배열형 CsI 섬광결정을 가진 소형 감마카메라의 평행구멍형 조준기를 최적화하고 조준기 부착시 발생할 수 있는 결합오차가 영상의 질에 미치는 영향을 평가하는 것이다. GATE 코드를 이용하여 육각형과 사각형 평행구멍형 조준기의 구멍크기에 따른 Tc-99m 점선원 영상의 민감도 및 공간분해능을 측정하고 최적화된 조준기를 바탕으로 조준기와 섬광체 사이에 2 mm 이내의 미세한 틈이 있을 경우에 대한 평판선원의 영상 균일도를 측정하였다. 동일 구멍크기에 대해 사각구멍형 조준기가 육각구멍형 조준기에 비해 민감도가 우수한 결과를 보였으며, 섬광결정과 사각구멍조준기의 크기를 1 대 4로 일치시켰을 때, 선원의 거리에 따른 공간분해능의 변화가 가장 적은 것을 알 수 있었다. 조준기와 검출기의 결합면 평행오차는 영상의 균일도와 민감도 모두를 선형적으로 감소시키는 경향을 보였다. 이 연구 결과는 배열형 섬광결정과 단일 섬광결정에 대해 조준기의 성능차이를 보이고, 영상의 균일도 및 민감도 저하의 원인이 조준기의 결합오차에서 기인할 수 있음을 증명함으로써, 핵의학 영상 화질 개선을 위한 새로운 접근법을 제시한다.

  • PDF

오스테나이트계 스테인리스강과 SM45C의 연속파형 Nd:YAG 레이저 용접특성비교 (Comparison of Welding Characteristics of Austenitic 304 Stainless Steel and SM45C Using a Continuous Wave Nd:YAG Laser)

  • 유영태;오용석;노경보;임기건
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.58-67
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless and SM45C using a continuous wave Nd:YAG laser n experimentally investigated Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much Inter than those involved in conventional welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar and plates, etc. The Nd:YAG laser welding process is one of the most advanced manufacturing technologies owing to its high speed and penetration. This paper describes the weld ability of SM45C carbon steel for machine structural use by Nd:YAG laser. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

Assessment of DVC measurement uncertainty on GFRPs with various fiber architectures

  • Bartulovic, Ante;Tomicevic, Zvonimir;Bubalo, Ante;Hild, Francois
    • Coupled systems mechanics
    • /
    • 제11권1호
    • /
    • pp.15-32
    • /
    • 2022
  • The comprehensive understanding of the fiber reinforced polymer behavior requires the use of advanced non-destructive testing methods due to its heterogeneous microstructure and anisotropic mechanical proprieties. In addition, the material response under load is strongly associated with manufacturing defects (e.g., voids, inclusions, fiber misalignment, debonds, improper cure and delamination). Such imperfections and microstructures induce various damage mechanisms arising at different scales before macrocracks are formed. The origin of damage phenomena can only be fully understood with the access to underlying microstructural features. This makes X-ray Computed Tomography an appropriate imaging tool to capture changes in the bulk of fibrous materials. Moreover, Digital Volume Correlation (DVC) can be used to measure kinematic fields induced by various loading histories. The correlation technique relies on image contrast induced by microstructures. Fibrous composites can be reinforced by different fiber architectures that may lead to poor natural contrast. Hence, a priori analyses need to be performed to assess the corresponding DVC measurement uncertainties. This study aimed to evaluate measurement resolutions of global and regularized DVC for glass fiber reinforced polymers with different fiber architectures. The measurement uncertainties were evaluated with respect to element size and regularization lengths. Even though FE-based DVC could not reach the recommended displacement uncertainty with low spatial resolution, regularized DVC enabled for the use of fine meshes when applying appropriate regularization.

정전용량센서를 이용한 소형공작기계의 기하학적 오차측정 (Measurement of Geometric Errors in a Miniaturized Machine Tool Using Capacitance Sensors)

  • 권성환;이재하;리우위;임창범;양승한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1733-1736
    • /
    • 2005
  • Many studies have been carried out to produce 3D features in the size range between $10{\mu}m\~10,000{\mu}m$, called Meso-scale. If these miniaturized systems have high relative accuracy and good volumetric utilization, it is possible to manufacture more complex and accurate shapes with various materials as well as there are advantages of reducing energy, space and resources. Due to imperfect components and misalignment in assembly, it is necessary to assess the accuracy of the miniaturized system itself to obtain high relative accuracy. Laser interferometers are widely used to measure geometric errors called as quasi-static errors. For miniaturized system, however, it is difficult to install the required accessories such as optics and the measuring range is limited because of the size of the system and also this method is very expensive. Moreover, it is impossible to measure each error component simultaneously. A new system to measure simultaneously multiple geometric errors is proposed using capacitance sensors. Each error was measured using capacitance sensors and a measurement algorithm was mathematically derived. The experiments show that the proposed measurement system can be used effectively to assess the accuracy of miniaturized system at a low cost.

  • PDF

Stator Current Processing-Based Technique for Bearing Damage Detection in Induction Motors

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1439-1444
    • /
    • 2005
  • Induction motors are the most commonly used electrical drives because they are rugged, mechanically simple, adaptable to widely different operating conditions, and simple to control. The most common faults in squirrel-cage induction motors are bearing, stator and rotor faults. Surveys conducted by the IEEE and EPRI show that the most common fault in induction motor is bearing failure (${\sim}$40% of failure). Thence, this paper addresses experimental results for diagnosing faults with different rolling element bearing damage via motor current spectral analysis. Rolling element bearings generally consist of two rings, an inner and outer, between which a set of balls or rollers rotate in raceways. We set the experimental test bed to detect the rolling-element bearing misalignment of 3 type induction motors with normal condition bearing system, shaft deflection system by external force and a hole drilled through the outer race of the shaft end bearing of the four pole test motor. This paper takes the initial step of investigating the efficacy of current monitoring for bearing fault detection by incipient bearing failure. The failure modes are reviewed and the characteristics of bearing frequency associated with the physical construction of the bearings are defined. The effects on the stator current spectrum are described and related frequencies are also determined. This is an important result in the formulation of a fault detection scheme that monitors the stator currents. We utilized the FFT, Wavelet analysis and averaging signal pattern by inner product tool to analyze stator current components. The test results clearly illustrate that the stator signature can be used to identify the presence of a bearing fault.

  • PDF

봉 추나요법의 개요 (Introduction of Bong Chuna Manual Therapy)

  • 오원교;신병철
    • 척추신경추나의학회지
    • /
    • 제2권1호
    • /
    • pp.99-114
    • /
    • 2007
  • Objectives : The purpose of this study was to introduce the Chuna Manual Therapy (CMT) using Bong (a type of stick which is called 'bong') as a part of Oriental Medicine. Methods : We searched several traditional methods of CMT using Bong, either individual contact to specialist of CMT using Bong or referred to publications, and summarized briefly for introduction. Authors also made a comparative study between existing CMT and CMT using the bong. Results & Conclusions : The indications of Bong CMT are regarded as acute or chronic pain syndrome, whiplash associated disorders, facet syndrome, vertebral misalignment, chronic fatigue syndrome, obesity and also lower extremity length difference caused by malalignment of vertebrae and pelvic bone. The Meridian Muscle Therapy by pressing down using the Bong can be carried out on the imbalances of the muscle by shortening and lengthening contraction. CMT with Bong is considered more effective than other existing CMT in terms of effectiveness. In the case of pelvic correction which needs a tremendous amount of force, it can reduce the force required effectively. This fact can be inferred by the theory of composition and decomposition of force during the transmission of power. We can perform Bong CMT feeling less fatigued subsequently than general CMT. Pressing down with flexed fingers to grip bong acts on the contraction of flexor digiti and extensor digiti muscle, this protects the $doctor^{\circ}{\emptyset}s$ wrist joints from injury. The bong which acts as a tool between the doctor and the patient, while being given treatment, absorbs and spreads out the direct impact from the patient to the doctor. CMT with Bong is able to apply to both existing massage therapies with the hand. The bong appliance can be used in all applications, particularly, but not limited to; Orthopedic and Manual Correction Therapy, Meridian Muscle Pressing, Exercise Therapy, and Meridian Point Manual Pressing Therapy. CMT with Bong belongs to the category of oriental rehabilitation and Chuna manual medicine.

  • PDF