• Title/Summary/Keyword: Tool life

Search Result 2,275, Processing Time 0.031 seconds

Applications of bridge information modeling in bridges life cycle

  • Marzouk, Mohamed M.;Hisham, Mohamed;Al-Gahtani, Khalid
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.407-418
    • /
    • 2014
  • The purpose of this paper is to present an Integrated Life Cycle Bridge Information Modeling that can be used throughout different phases of the bridge life cycle including: design, construction, and operation and maintenance phases. Bridge Information Modeling (BrIM) has become an effective tool in bridge engineering and construction. It has been used in obtaining accurate shop drawings, cost estimation, and visualization. In this paper, BrIM is used as an integrated tool for bridges life cycle information modeling. In the design phase, BrIM model can be used in obtaining optimum construction methods and performing structural advanced analysis. During construction phase, the model selects the appropriate locations for mobile cranes, monitors the status of precast components, and controls documents. Whereas, it acts as a tool for bridge management system in operation and maintenance phase. The paper provides a detailed description for each use of BrIM model in design, construction, and operation and maintenance phases of bridges. It is proven that BrIM is an effective tool for bridge management systems throughout their life phases.

Turning of Hardened Materials Using the Air-oil Cooling System (에어-오일 냉각방식에 의한 고경도재료의 선삭)

  • Chung, Bo Gu;Ko, Tae Jo;Kim, Hee Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.73-81
    • /
    • 1997
  • The hard turning process defined as a single point turning of materials harder than $H_{R}$C 58 differs from conventional turning because of hardness of the work materials and cutting toos needed in the process. In hard turning, tool life is very short, of the order of a few minutes, during which the cutting tool is subjected to the extremes of stress and temperature. In this regard, it is well known that CBN tool is proper for this process in spite of expensive cost. In this research, we studied the feasibility of the use of the low cost cutting tool such as a aTiN coated tool. To this end, a new cooling system was designed with an air-oil method for reducing tool temperature, which is based on the principle of air vortex flow. That is, the outlet temperature of the air becomes aver 20 .deg. C lower than atmosphere temperature by entering pressurized air of 5kgf/c $m^{2}$ into the inlet. This cooled air ejected to the top of the cutting tool lowered tool temperature, which reduced the wear of a TiN coated tool by the 30% of CBN tool life with respect to the same cutting length.h.

  • PDF

The Investigation against the Repast Tool Culture of the Orient and the West - Fork and Knife, Spoon Cultural Area and Chopsticks Cultural Area - (동서양 취식도구 문화에 대한 고찰 - 포크와 나이프, 스푼식문화권과 저식문화권 -)

  • 조경숙;이미혜
    • Culinary science and hospitality research
    • /
    • v.9 no.1
    • /
    • pp.101-120
    • /
    • 2003
  • The today society comes wind important position we and the economic room gets and our dietary life simple ´it eats,´ is not only the act which is primary work, ´it enjoys,´, ´appreciates´with culture dimension to execute, becoming, it fellowed hereupon and with the aesthetics idea which pursues the quality of change and life of our dietary life there is to a culture and the repast tool which is an essential width enjoyed from meaning as the jar tool and with meaning as the object and it will be able to appreciate it developed it came. The research which it sees the repast fool of the Orient and the West it is appropriate from dietary life and it uses to respect with It observes the understanding of the chopsticks and the cutlery. With the repast tool development and evolution or it undergoes the process of change and comparison analyzes becomes the all chopsticks and the cutlery with each other and the understanding for the culture collision and a culture harmony of the heterogeneous element which bisection is objective of research.

  • PDF

A Study About Tool Wear Characteristic on Geometry of Tap (탭 형상에 따른 공구마모 특성에 관한 연구)

  • 최만성;윤홍기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.892-897
    • /
    • 2000
  • In this study, tap wear was analyzed not only to predict the tap life time but also to propose an improved tap design. Because rake angle and thread relief of tap are the significant factors in geometry of tap, these two factors were picked as the experiment variables. The experiment was conducted with six types of tap which have 6$^{\circ}$ , 8$^{\circ}$ and 12$^{\circ}$ of rake angles with 0,08mm and 0.14 mm of thread relief. From the measured cutting force, it could be known that cutting torque was low at the large the rake thread relief and tool life was long as rake angle became large. Eventually, tool life is longest when rake angle is 12$^{\circ}$ and the with 0.08mm thread relief. Aand the width of crater wear and that of flank wear were measured when a tapping torque was 20 [$kg_f$-mm] . Most of the measured values were above the width of tool wear[$V_B$=O.O3m], which means that tool life is over.

  • PDF

A study on the machinability of SUS304

  • Lim, K.Y.;Yu, K.H.;Seo, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.34-41
    • /
    • 1993
  • SUS304 is wellknown as difficult-to-machine materials. It is easy to appear workhardened, and workhardening is one of the causes of groove wear on the tool. In this paper, the author would like to compare the width of flank wear with that of groove wear, and to find whether the groove wear can be used as a criterion of a tool life. The design of the twelve tests provides three levels for each variable (speed: 200m/min, 118m/min, 70m/min; feed: 0.3mm/rev, 0.17mm/rev, 0.1mm/rev; depth of cut: 0.4mm, 0.28mm, 0.2mm). The study of tool-life testing by statistical technique follows usual most scientific sequence. So the tool-life predicting equation is calculated by the method of least squares. The overall adequacy of the model can be verified by the analysis of variance. The results obtained are as follows : 1) When SUS304 is cut in 200(m/min), the width of flank wear is much larger than that of groove wear. 2) In cutting speed 118m/min, flank wear is a little larger than groove wear and in the cutting speed 70m/min, the latter is a little larger so that it is reasonable to determine the tool life according the crierion by groove wear in the low cutting speed (less than 70m/min). 3) Owing to the burr the depth of engagement along the cutting edge is extended toward the shank.

  • PDF

Cutting Performance of Si$_3$N$_4$ Based SiC Ceramic Cutting Tools

  • Kwon, Won-Tae;Kim, Young-Wook
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.388-394
    • /
    • 2004
  • Composites of Si$_3$N$_4$-SiC containing up to 30 wt% of dispersed SiC particles were fabricated via hot-pressing with an oxynitride glass. To determine the effect of sintering time and SiC content on the mechanical properties and the cutting performance, the composites with fixed 8hr-sintering time and 20 wt% SiC content were fabricated and tested. Fracture toughness of the composites increased with increasing sintering time, while the hardness increased as the SiC content increased up to 20 wt%. The hardness of the composites was relatively independent of the grain size and the sintered density. For machining heat-treated AISI4140, the insert with 20 wt% SiC sintered for 8hr showed the longest tool life while the insert with 20 wt% SiC sintered for 12hr showed the longest tool life for machining gray cast iron. An effort was made to relate the mechanical properties, such as hardness, fracture toughness and wear resistance coefficient with the tool life. However, no apparent relationship was found between them. It may be stated that tool life is affected by not only the mechanical properties but also other properties such as surface roughness, density, grian size and the number of the inherent defects in the inserts.

Evaluation Tool Life and Cutting Characteristics of Carbide Hob TiAlN Coating Surface Polishing Using Aero Lap Polishing Technology and Multi-con (Multi-con와 ALPT을 활용한 TiAlN코팅층 표면연마 초경호브의 절삭특성 및 공구수명 평가)

  • Cheon, Jong-Pil;Pyoun, Young-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.848-854
    • /
    • 2012
  • SCM420 steel cutting gear to improve the durability is quenched. When quenching, increases surface hardness, a change of the physical properties and machinability or fall. This study, using a solid carbide hobs skiving hobbing gear cutting finishing. And cutting tool solid carbide TiAlN coating hove when TiAlN coating on the surface of multi-con polishing hob conducted aero lap nano polishing for each cutting. Experimental results conducted aero lap nano coating on the surface polishing tool machinability was excellent. And aero lap nano polishing tool results were reduced 2.5 times the tool wear compared to TiAlN coated tools. Excellent results were 1.42 times longer tool life.

Analysis of Characteristic Evaluation of Microdrilling for the Cemented Carbides Materials (초경합금 소재 마이크로드릴의 가공특성 평가)

  • 김건회
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.52-59
    • /
    • 2002
  • Resently, reduction of industrial products in size and weight has increased by the application of micro-drill for gadgets of high precision and gave rise to a great interest in a micro-drilling. Due to the lack of tool stiffness and the chip packing, micro-drilling requires not only the robust tool structure which has not affected by the vibration, but also the effective drilling methods designed to prevent tool fracture from cutting troubles. Firstly, this paper presents a optimum characteristic evaluation method of 0.15mm microdrill in consideration of new manufacturing processes for improving the product rate and extend the tool life, and secondly suggest between microdrilling characteristic properties of tool md evaluation of workpiece quality through experiment.

A Study on Predictin of Die Life of Warm Forging by Wear(II) -Application of Suggested Die Wear Model- (마멸에 의한 온간단조의 금형수명 예측에 관한 연구(II) -금형 마멸 모델의 적용-)

  • 강종훈;박은우;제진수;강성우
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.94-99
    • /
    • 1998
  • In bulk metal forming processes prediction of tool life is very important for saving production cost and achieving good material properties. Generally the service life of tools in metal forming process is limited to a large extent by wear, fracture and plastic deformation of tools. In case of hot and warm forging processes, tool life depends on wear over 70%. In this study finite element analyses are applied to warm forging and hot forging by adopting suggested wear model. By comparision of simulation and real profile of die, suggested model is verified

  • PDF

Machinability of Presintered $Al_2O_3$ ceramics (알루미나 세라믹 예비소결제의 피절삭성)

  • Kim, Sung-Chung;Lee, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.1002-1012
    • /
    • 1997
  • When the presintered ceramics are machined with ceramic tool, the tool life becomes extremely short. The CBN tool exhibits the best performance in dry machining of the ceramics presintered at $1450^{\circ}C$ among all cutting tests. The roughness of the machined surface of the ceramics presintered below $1350^{\circ}C$ is smaller than that of the ceramics presintered at $1450^{\circ}C$ While the performance of the cemented carbide and CBN tools is better in dry than in wet machining, the diamond tool shows adverse tendency. The tool life is not affected by the feed rate and depth of cut. During the following full-sintering after the machining of the presintered ceramics, the surface roughness decreases up to 62%. The finished surface in machining the presintered ceramics is much better than that in machining the full-sintered ceramic.