• Title/Summary/Keyword: Tool Surface Roughness

Search Result 772, Processing Time 0.029 seconds

A Study on Roughness Characteristic about Rotational Accuracy Variation (스핀들의 회전 정밀도에 따른 표면 거칠기 특성 연구)

  • Park, Ki-Beom;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.110-115
    • /
    • 2009
  • In general, the radial error motion of a machine tool spindle system is effected on the accuracy of the parts to be made. This paper presents in milling process an investigation into spindle rotational accuracy effects on surface roughness of processing parts. We experimented the effects on spindle rotational accuracy in milling process by cutting AL 7075 workpiece at various rotational speed. In order to analyze the effects of rotational accuracy on surface roughness, we proposed the method using iSIGHT's RBF Approximation. The proposed method can be used fur anticipating the surface roughness when some spindle rotational accuracy experiments could be done in milling process.

A Study on the Surface Roughness Influenced by SM45C Hardness in High Frequency Induction Hardening (고주파열처리에 의한 SM45C 경도가 가공 표면 품위에 미치는 영향에 관한 연구)

  • Kim, W.I.;Heo, S.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • In this paper, the surface roughness influenced by Sm45C hardness in high frequency induction hardening and mechanical characteristics for the changed Hv 598 part and the unchanged hardness Hv 223 part by use of cermet and ceramic cutting tools was experimentally examined. Finally, we could be had some important results by processing surface roughness on cutting conditions such as cutting speed, feed rate, depth of cut and changes of tool nose radius. The results are summarized as follows. 1. In case of the same cutting condition, the hardness of workpiece was high and acquired the best processing surface roughness when the radius of the tool nose had 0.8 mm and feed rate was 0.04 mm/rev. 2. In case of the hardness of workpiece, though the cutting speed didn't have an effect on processing surface roughness, the less feed rate and the more processing surface roughness improved. On the other hand, the low inside the hardness of workpiece, the more cutting speed and the more feed rate increase, the processing surface of roughness improved. 3. Regardless of the hardness of workpiece, the change of the cutting depth didn't have great effect on the surface roughness. 4. On cutting the high surface hardness part with cutting tools of cermet and ceramic, it can be acquired the higher processing surface roughness because it hadn't been taken effect on cutting speed, In case of the cutting process of the low inside hardness part the two cutting tools have acquired the similar processing surface roughness.

  • PDF

Components Analysis of Surface Roughness in Turning Process by Frequency Analysis (주파수 분석에 의한 선삭면의 표면 거칠기 인자 해석)

  • Kim, Gyung-Nyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.184-191
    • /
    • 1996
  • The purpose of this paper is to investigate components of surface roughness in turning with respect to the tool configuration and the changes of working conditions. Tool configurations of SNMG120404, SNMG120408 and DNMG150404, DNMG150408 are used, and working conditions such as cutting speed 3nd feed are varied. That is, the changes of cutting speed and feed were 150, 200, 250 m/min and 0.05, 0.1, 0.3 mm/rev, respectively. From the results obtained by the frequency analysis with spectrum, it is noted that the surface roughness was influenced most significantly by the feed. It is also observed that the vibration of bite had an effect on both the surface roughness and the surface waviness. Moreover, the influence of surface roughness increases as the feed decreases. Lastly, the vibration of the spindle was found to have little influence on the surface roughness in normal cases and the tool configuration was not the components of the surface roughness.

  • PDF

Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium (티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석)

  • Jeong Sik Han;Jong Yun Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

Study on the effect of the surface rolling condition to the surface roughness (표면 Rolling시 작업조건이 표면조도에 미치는 영향)

  • 강명순;김희남
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.68-76
    • /
    • 1986
  • The surface rolling method which is one of the plastic deformation processes increases the surface roughness and hardness of materials. In this study, three NACHI6000 ZZ bearing were used for surface rolling tool on the mild steel and high carbon steel. The purpose of this study is to investigate the effects of rolling speed, feed rate and contact pressure on the surface roughness. The following results have been obtained with the mild steel and high carbon steel. 1. The roller finishing method has increased surface roughness from 2.4 .mu.m Ra at initial ground surface to 0.17 .mu.m Ra-0.4 .mu.m Ra. 2. The contact pressure has influenced greatly on the surface roughness. There is an optimal contact pressure. 3. As the rolling speed and the feed rate decrease, the surface roughness improves. 4. The optimal contact pressure for the good surface roughness of SS40 and STC 3 has been at 213 Kgf/Cm$^{2}$ and 220 Kgf/Cm$^{2}$ respectively.

  • PDF

On Cutting Characteristics Change of Low Temperature Cooling Tool(1st Report) - Cutting Characteristics of Cage Motor Rotor - (저온냉각공구의 절삭특성 변화 (제1보) -모터 회전자의 절삭특성)

  • 김순채;김희남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.44-48
    • /
    • 1994
  • The cutting process of cage motor rotor require high precision and good roughness. The surface roughness of cutting face is very important factor with effect on the magnetic flux density of cage motor rotor. The paper describes a cause of decrease in the cutting force and roughness on low temperature cooling tool by means of analysis on the mechanism of force system at cutting confition and experimental findings. The main results as compared with the room temperature cutting are as follow : 1) The cutting resistance decreased due to low temperature cooling tool. 2) The surface roughness decreased due to low temperature cooling tool.

  • PDF

Tool Wear and Cutting Characteristics in the Machining of Die Material using Ceramic Toll (세라믹 공구를 이용한 금형강 가공시 공구마멸과 절삭특성)

  • 손창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.114-118
    • /
    • 1996
  • Evaluation of cutting condition is one of the most important aspect to improve productivity and quality. In this study, the wear and cutting characteristics(cutting force, acoustic emission signal and surface roughness) of ceramic cutting tool for hardened die material(SKD11) were investigated by experiment. Flank wear on relief face of tool was occurred more dominant than crater wear on rake face. Experiments were performed under the various cutting condition.

  • PDF

A Study on the Effect of Tool Thermal Deformation on Surface Profiles for Turing Process (선삭에서 공구열변형이 표면 형상에 미치는 영향에 관한 연구)

  • 염철만;신근하;홍민성
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.33-39
    • /
    • 2001
  • During the turning of the workpiece, cutting heat causes thermal deformation of the cutting tool which influences the surface characteristics of the machined part. This paper presents a study of thermal deformation of the cutting tool. For this purpose, cutting tool is modeled based of Pro/Engineering and the thermal deformation is simulated by means of the finite element method. The thermal effect on the surface roughness profile is simulated by using surface-shaping system. It has been shown that the results of simulation are similar to those of experiment.

  • PDF

High speed machining using a NURBS interpolator (NURBS 보간을 이용한 고속 가공)

  • 이동윤;김현철;양민양;최인휴
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.323-328
    • /
    • 2004
  • Finish machining of a curved surface is often carried out by an NC system with curved interpolation in a high speed machining strategies. This study aims to develop the NURBS interpolator for the PC-NC based machine tools. In the case of a finish cut using a ball-end mill in high speed machining, low machinability at the bottom of a tool produces a harmful effect on surface roughness. The developed interpolator considers the relation between inclined angle, surface roughness, and feed rate, and adjusts real-time feed rate in order to generate surfaces which have isotropic surface roughness. The proposed interpolator is fully implemented and an experimental results are shown.

  • PDF