• Title/Summary/Keyword: Tool Performance

Search Result 4,209, Processing Time 0.68 seconds

Comparison of Convolutional Neural Network (CNN) Models for Lettuce Leaf Width and Length Prediction (상추잎 너비와 길이 예측을 위한 합성곱 신경망 모델 비교)

  • Ji Su Song;Dong Suk Kim;Hyo Sung Kim;Eun Ji Jung;Hyun Jung Hwang;Jaesung Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.434-441
    • /
    • 2023
  • Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.

The Marketing Effect of Loyalty Program on Relational Market Behavior : Focusing in Franchise Membership Fitness Club (로열티 프로그램이 고객 참여와 소비자-브랜드 관계에 기초한 관계형 시장 행동에 미치는 영향 : 프랜차이즈 회원제 휘트니스클럽을 대상으로)

  • Yoon, Kyung-Goo;Shin, Geon-Cheol
    • Journal of Distribution Research
    • /
    • v.17 no.2
    • /
    • pp.1-28
    • /
    • 2012
  • I. Introduction : The purpose of this study is to test empirically hypothetical causality among constructs used in previous studies to build the model of relational market behavior on customers' participation and consumer-brand relationship after introducing theories of relationship marketing, loyalty program, consumer-brand relationship, customers' participation in service marketing as previous studies with regard to relational market behavior, which Bagozzi(1995) and Peterson(1995) commented on constructs and definition suggested by Sheth and Parvatiyar (1995). For this purpose, loyalty program by the service provider, customers' participation and consumer-brand relationship as preceding variables explain relational market behavior defined by Sheth and Parvatiyar(1995). This study proposes that loyalty program as a tool of relationship marketing will be effective in that consumers' participation in marketing relationship results in a narrow range of choice(Sheth and Parvatiyar, 1995) because consumers think that their participation motive result in benefits(Peterson, 1995). Also, it is proposed that the quality of consumer-brand relationship explain the performance of relationship as well as the intermediary effect because the loyalty program could be evaluated based on relationship with customers. We reviewed the variables with regard to performance of relationship based on relation maintain in marketing literature, and then tested our hypotheses related to several performance variables including loyalty and intention of relation maintain based on the previous studies and constructs(Bendapudi and Berry, 1997 ; Bettencourt, 1997 ; Palmatier, Dant, Grewal and Evans, 2006 ; You Jae Yi and Soo Jin Lee, 2006). II. Study Model : Analyses about hypothetical causality were proceeded. The marketing effect of loyalty program on relational market behavior was empirically tested in study regarding a service provider. The research model in according to the path hypotheses (loyalty program ${\rightarrow}$ customers' participation ${\rightarrow}$ consumer-brand relationship ${\rightarrow}$ relational market behavior and loyalty program ${\rightarrow}$ consumer-brand relationship, and loyalty program ${\rightarrow}$ relational market behavior and customers' participation ${\rightarrow}$ consumer-brand relationship, and customers' participation ${\rightarrow}$ relational market behavior) proceeded as an activity for customer relation management was suggested. The main purpose of study is to see if relational market behavior could be brought as a result of developing relationship between consumers and a corporate into being stronger and more valuable when a corporate or a service provider try aggressively to build the relationship with customers (Bettencourt, 1997; Palmatier, Dant, Grewal and Evans, 2006; Sheth and Parvatiyar, 1995). III. Conclusion : The results of research into the membership fitness club, one of service areas with high level of customer participation (Bitner, Faranda, Hubbert and Zeithaml, 1997; Chase, 1978; Kelley, Donnelly, Jr. and Skinner, 1990) are as follows: First, causalities in according to path hypotheses were tested, after the preceding variables affecting relational market behavior and conceptual frame were suggested. In study, all hypotheses were supported as expected. This result confirms the proposition suggested by Sheth and Parvatiyar(1995), who claimed that intention of consumer and corporate to participate in marketing relationship brings high level of marketing productivity. Also, as a corporate or a service provider try aggressively to build relationship with customers, the relationship between consumers and a corporate can be developed into stronger and more valuable one (Bettencourt, 1997; Palmatier, Dant, Grewal and Evans, 2006). This finding supports the logic of relationship marketing. Second, because the question regarding the path hypothesis of consumer-brand relationship ${\rightarrow}$ relational market behavior are still at issue, the further analyses were conducted. In particular, there existed the mediating effects of consumer-brand relationship toward relational market behavior. Also, multiple regressions were conducted to see if which one strongly influences relational market behavior among specific question items with regard to consumer-brand relationship. As a result, the influence between items composing consumer-brand relationship and ones composing relational market behavior was different. Among items composing consumer-brand relationship, intimacy was an influence of sustaining relationship, word of mouth, and recommendation, intimacy and interdependence were influences of loyalty, intimacy and self-connection were influences of tolerance and advice. Notably, commitment among items measuring consumer-brand relationship had the negative influence with relational market behavior. This means that bringing relational market behavior is not consumer-brand relationship without personal commitment, but effort to build customer relationship like intimacy, interdependence, and self-connection. This finding confirms the results of Breivik and Thorbjornsen(2008). They reported that six variables composing the quality of consumer-brand relationship have higher explanation in regression model directly affecting performance of consumer-brand relationship. As a result of empirical analysis, among the constructs with regard to consumer-brand relationship, intimacy(B=0.512), interdependence(B=0.196), and quality of partner(B=0.153) had the effects on relation maintain. On the contrary, self-connection, love and passion, and commitment had little effect and did not show the statistical significance(p<0.05). On the other hand, intimacy(B=0.668) and interdependence(B=0.181) had the high regression estimates on word of mouth and recommendation. Regarding the effect on loyalty, explanation level of the model was high(R2=0.515), intimacy(0.538), interdependence(0.223), and quality of partner(0.177) showed the statistical significance(p<0.05). Furthermore, intimacy(0.441) had the strong effect as well as self-connection(0.201) and interdependence (0.163) had the effect on tolerance and forgive. And these three variables showed effects even on advice and suggestion, intimacy(0.373), self-connection(0.270), interdependence (0.155) respectively. Third, in study with regard to the positive effect(loyalty program ${\rightarrow}$ customers' participation, loyalty program ${\rightarrow}$ consumer-brand relationship, loyalty program ${\rightarrow}$ relational market behavior, customers' participation ${\rightarrow}$ consumer-brand relationship, customers' participation ${\rightarrow}$ relational market behavior, consumer-brand relationship ${\rightarrow}$ relational market behavior), the path hypothesis of customers' participation ${\rightarrow}$ consumer-brand relationship, was supported. The fact that path hypothesis of customers' participation ${\rightarrow}$ consumer-brand relationship was supported confirms assertion by Bitner(1995), Fournier(1994), Sheth and Parvatiyar(1995) about consumer relationship to participate in marketing relationship.

  • PDF

Risk Factor Analysis for Preventing Foodborne Illness in Restaurants and the Development of Food Safety Training Materials (레스토랑 식중독 예방을 위한 위해 요소 규명 및 위생교육 매체 개발)

  • Park, Sung-Hee;Noh, Jae-Min;Chang, Hye-Ja;Kang, Young-Jae;Kwak, Tong-Kyung
    • Korean journal of food and cookery science
    • /
    • v.23 no.5
    • /
    • pp.589-600
    • /
    • 2007
  • Recently, with the rapid expansion of the franchise restaurants, ensuring food safety has become essential for restaurant growth. Consequently, the need for food safety training and related material is in increasing demand. In this study, we identified potentially hazardous risk factors for ensuring food safety in restaurants through a food safety monitoring tool, and developed training materials for restaurant employees based on the results. The surveyed restaurants, consisting of 6 Korean restaurants and 1 Japanese restaurant were located in Seoul. Their average check was 15,500 won, ranging from 9,000 to 23,000 won. The range of their total space was 297.5 to $1322.4m^2$, and the amount of kitchen space per total area ranged from 4.4 to 30 percent. The mean score for food safety management performance was 57 out of 100 points, with a range of 51 to 73 points. For risk factor analysis, the most frequently cited sanitary violations involved the handwashing methods/handwashing facilities supplies (7.5%), receiving activities (7.5%), checking and recording of frozen/refrigerated foods temperature (0%), holding foods off the floor (0%), washing of fruits and vegetables (42%), planning and supervising facility cleaning and maintaining programs of facilities (50%), pest control (13%), and toilet equipped/cleaned (13%). Base on these results, the main points that were addressed in the hygiene training of restaurant employees included 4 principles and 8 concepts. The four principles consisted of personal hygiene, prevention of food contamination, time/temperature control, and refrigerator storage. The eight concepts included: (1) personal hygiene and cleanliness with proper handwashing, (2) approved food source and receiving management (3) refrigerator and freezer control, (4) storage management, (5) labeling, (6) prevention of food contamination, (7) cooking and reheating control, and (8) cleaning, sanitation, and plumbing control. Finally, a hygiene training manual and poster leaflets were developed as a food safety training materials for restaurants employees.

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

Rough Set Analysis for Stock Market Timing (러프집합분석을 이용한 매매시점 결정)

  • Huh, Jin-Nyung;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.77-97
    • /
    • 2010
  • Market timing is an investment strategy which is used for obtaining excessive return from financial market. In general, detection of market timing means determining when to buy and sell to get excess return from trading. In many market timing systems, trading rules have been used as an engine to generate signals for trade. On the other hand, some researchers proposed the rough set analysis as a proper tool for market timing because it does not generate a signal for trade when the pattern of the market is uncertain by using the control function. The data for the rough set analysis should be discretized of numeric value because the rough set only accepts categorical data for analysis. Discretization searches for proper "cuts" for numeric data that determine intervals. All values that lie within each interval are transformed into same value. In general, there are four methods for data discretization in rough set analysis including equal frequency scaling, expert's knowledge-based discretization, minimum entropy scaling, and na$\ddot{i}$ve and Boolean reasoning-based discretization. Equal frequency scaling fixes a number of intervals and examines the histogram of each variable, then determines cuts so that approximately the same number of samples fall into each of the intervals. Expert's knowledge-based discretization determines cuts according to knowledge of domain experts through literature review or interview with experts. Minimum entropy scaling implements the algorithm based on recursively partitioning the value set of each variable so that a local measure of entropy is optimized. Na$\ddot{i}$ve and Booleanreasoning-based discretization searches categorical values by using Na$\ddot{i}$ve scaling the data, then finds the optimized dicretization thresholds through Boolean reasoning. Although the rough set analysis is promising for market timing, there is little research on the impact of the various data discretization methods on performance from trading using the rough set analysis. In this study, we compare stock market timing models using rough set analysis with various data discretization methods. The research data used in this study are the KOSPI 200 from May 1996 to October 1998. KOSPI 200 is the underlying index of the KOSPI 200 futures which is the first derivative instrument in the Korean stock market. The KOSPI 200 is a market value weighted index which consists of 200 stocks selected by criteria on liquidity and their status in corresponding industry including manufacturing, construction, communication, electricity and gas, distribution and services, and financing. The total number of samples is 660 trading days. In addition, this study uses popular technical indicators as independent variables. The experimental results show that the most profitable method for the training sample is the na$\ddot{i}$ve and Boolean reasoning but the expert's knowledge-based discretization is the most profitable method for the validation sample. In addition, the expert's knowledge-based discretization produced robust performance for both of training and validation sample. We also compared rough set analysis and decision tree. This study experimented C4.5 for the comparison purpose. The results show that rough set analysis with expert's knowledge-based discretization produced more profitable rules than C4.5.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

6·25 Special Play Study (6·25 특집극 <최후의 증인> 연구)

  • Song, Chihyuk
    • (The) Research of the performance art and culture
    • /
    • no.42
    • /
    • pp.47-75
    • /
    • 2021
  • This thesis looks into the interpretation of the Korean War and mystery genre in Korea in the 1970s by analyzing the special drama , in which the theme was directly related to the Korean War, airing through MBC in 1979. It begins by finding the change in direction in the 1970s when the world of TV was dictated through the heavy censorship and the memory of the war by the government. It also looks at the intentions of the producer who was taking in the new way and the viewers who also accepted this drama and its reflections. In order to gain some insights into these issues, it compares between the drama "The Last Witness" and the original novel by Seong-jong Kim who holds the same time to see the way in which this is dramatized. The drama, "The Last Witness", was produced with a plan to generate a high-quality special drama which combined both artistry and sense of purpose. Nevertheless, as watching TV became a leisurely past-time during this period, TV dramas become more aggressive and suggestive in order to attract viewers. This ultimately was encored with obstacles due to the regime and the heavy censorship at the time. The genre of special drama that is well known in South Korea, is designed as an art form to satisfy both their unique artistry and its purpose. The conflict is seen between the key elements of the artistic drama crated by the producers and the 'encouraged' elements that often are needed to engage the viewers. Thus, more often than not, special dramas defeat the original intention of national harmony, encouraged by the regime. This is due to the 'novelty' aspect which grows from the effort of bringing enjoyment to viewers whilst also trying to achieve the artistic drama to life. Alongside this, crime element in this drama is designed in a way that visually embodies the process of deduction, becoming a new possibility to secure the reality of the times. However, it was also a paradoxical existence since it was indicated as an example of unrefined culture that lost its original intention. In that way, it is worth to think that detective suspense stories, which were not popular in Korea, influenced viewers as a tv drama series in the 1970s through the various elements that compose the genre. They went through a process of transplantation and acceptance whilst also attempting to satisfy the viewers and their encouraged elements to engage them. As is well known, crime drama in Korea has its own style by mixing anticommunism and detective reasoning. This combination is found in the way in which the genre naturally forms through the elements selected and excluded in the dramatization of "The Last Witness". The point is that the special drama "The Last Witness" can be seen as an intermediate form that shows the tendency of transformation from the detective reasoning form alongside the crime aspects as TV dramas began to include anticommunism messaging and investigation in the 1970s. In conclusion, when the detective reasoning is used as an element in a TV drama, it shows the trust of the public system and it constantly seeks the possibility of circumventing the political interpretation. The memories of the war is seen as a tool that neutralizes the dismal imaginations inscribed on the dark side of society and the system. As a result, "The Last Witness", broadcasted at the end of the Yushin regime in Korea, is a strange result which combines the logic of a special drama and the encouraged characteristics of television dramas. The viewers' desire which is the discussion about the hidden traces from the texts needs to be restored again.

An Investigation on the Assessment Tool and Status of Assessment in the 'Scientific Inquiry Experiment' of the 2015 Revised Curriculum (2015 개정 교육과정 '과학탐구실험' 평가 도구 및 평가 현황 탐색)

  • Baek, Jongho;Byun, Taejin;Lee, Dongwon;Shim, Hyeon-Pyo
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.5
    • /
    • pp.515-529
    • /
    • 2020
  • 'Scientific inquiry experiments', which was newly created subjects in the 2015 revised curriculum, was expected in the aspect of learning science and developing core competences through science practices. Based on changed view of evaluation, assessments of a practice-centered subject 'Scientific inquiry experiments' should be try to conducted in various ways, but many challenges were reported. In this study, through analysis of current status of assessment of the subject, we intended to find the way of conducting and supporting 'Scientific inquiry experiments'. We collected assessment materials and explanatory description about them from 25 teachers who taught 'Scientific inquiry experiments' in 2018 and 2019. And we analyzed the cases with framework which were consisted with three main categories: elements, standards, methods of assessments. Also, we investigated how the results of assessment were utilized. For the validity, we requested verification of the results of our data analysis to experts of science education and science teachers. From them, we also collected their opinions about our analysis. As a result of the study, teachers assessed some elements of inquiry skills such as 'analysis and interpreting the data', 'conducting inquiry' more than others which were closely related to what subject-matter the teachers used to organized inquiry program with. In the aspect of domain of assessments, though cognitive domain and affective domain as well as skills were evaluated, we also found that the assessment of those domains had some limitation. In terms of standard of assessment, the goals of assessment were presented in most cases, but there were relatively few cases which had the specific criteria and the stepwise statements of expected performance of students. The time and subject of the assessment were mainly post-class and teachers, and others such as in-class assessments, peer-assessments were used only in specific contexts. In all cases, the results of assessments used for calculating students' grade, but in some cases, we could observe that the results used for improving teaching and feedback for students. Based on these results, we discussed how to support the assessments of 'Scientific inquiry experiments'.

Analysis of ethyl glucuronide (EtG) in Hair for the diagnosis of chronic alcohol abuse of Korean (한국인의 만성 알코올 중독 진단을 위한 모발에서 Ethyl Glucuronide (EtG) 분석법 연구)

  • Gong, Bokyoung;Jo, Young-Hoon;Ju, Soyeong;Min, Ji-Sook;Kwon, Mia
    • Analytical Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.151-158
    • /
    • 2020
  • Alcohol, which can easily be obtained in the same way as ordinary beverages, is harmful enough to cause death due to excessive drinking and chronic alcohol intake, so it is important to maintain a proper amount of drinking and healthy drinking habits. In addition, the incidence of behavioral disturbances and impaired judgments that can be caused by chronic alcohol drinking of more than adequate amounts of alcohol is also significant. Accordingly it is very useful for forensic science to check whether the person involved is drunken or is alcoholism state in various accidents. Currently, in Korea, alcohol consumption is determined by detecting the level of alcohol or alcohol metabolism 'ethyl glucuronide (EtG)' in blood or urine samples. However, analysis of alcohol or EtG in blood or urine can only provide information about the current state of alcohol consumption because of a narrow window of detection time. Therefore, it is important to analyze the EtG as a long-term direct alcohol metabolite bio-marker in human hair and to investigate relationship between alcohol consumption and EtG concentration for the evaluation of chronic ethanol consumption. In this study, we established an analytical method for the detection of EtG in Korean hair efficiently and validated selectivity, linearity, limits of detection (LOD), limits of quantification (LOQ), matrix effect, recovery, process efficiency, accuracy and precision using liquid chromatography tandem mass spectrometry (LC-MS/MS). In addition, the assay performance was evaluated in Korean social drinker's hair and the postmortem hair of a chronic alcoholism. The results of this study can be useful in monitoring the alcohol abuse of Korean in clinical cases and legal procedures related to custody and provide a useful tool to evaluate postmortem diagnosis of alcoholic ketoacidosis in forensics.