• Title/Summary/Keyword: Tool Interference Avoidance

Search Result 15, Processing Time 0.021 seconds

A Study on Tool Interference Avoidance Using Rectangular Surface Approximation (가각근사에 의한 공구 간섭 제거에 관한 연구)

  • 장동규;이희관;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.188-192
    • /
    • 1994
  • This paper presenta new method for tool interference acoidance using rectanguar approximation in NC machining of scuptured surface. The procedure of algorithm for approximation of sculptured surface to rectangular surface is described. Using this algorithm, we can check concave, convex, and side interference region and avoid these interferenes.

  • PDF

A Study on Tool interference avoidance in machining adie cavity (금형가공에 있어서의 공구간섭 제거에 관한 연구)

  • 강성기;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.101-105
    • /
    • 1993
  • When machining a die cavity, many machining conditions must be considered. Especially when using a NC machine, The tool interference is a improtant problem. In this paper, we consider the tool interference of free-formed surfaces and analytic compound surfaces which having free_formed base and many primitives and present a method checking the tool interference regions and avoiding them

  • PDF

Tool Interference Avoidance in compound Surface Using solid Modeling Method (Solid Modeling 기법을 응용한 복합곡면 가공에 있어서 공구간섭 제거)

  • 장동규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.20-28
    • /
    • 1996
  • Compound surface modeling is widely used for die cavities and punches. A compound surface is defined in 3-D space by specifying the topological relationship of several anlytic surface elements and a sculptured surface. A constructive solid gemonetry scheme is employed to model the analytic compound surface. the desired compound surface can be accomplished by specifying topological reationship in terms of boolean relations between pimitives and the sculptured surfaces. Additionally, a method is presented for checking and avoiding the tool interference occuued in machining the compound surface. Using this method. the interference of concave, convex, and side region can be checked easily and avoided rpapidly.

  • PDF

Interference avoidance in CNC machining of compound free-form surfaces (CNC 가공시 복합 자유곡면상에서의 공구간섭 탐지와 수정)

  • 이성근;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.291-294
    • /
    • 2000
  • Free-form surfaces arise in shipbuilding, automotive and aerospace industries. Specially compound free-form surfaces so do. Machining complicated products consist of compound surface, it is very important to avold and remove tool interferences. By the way, in compound surfaces the tool interference can occur not only in the tool path direction but also in the other direction. A new tool interference detection and correction using tool interference conditions is suggested to identify and correct the tool interference in compound surfaces.

  • PDF

A Study on the Avoidance of Tool Interference in Analytic Compound Surface Machining (해석적 복합 곡면 가공에 있어서의 공구 간섭 방지에 관한 연구)

  • Kang, S.G.;Cho, S.W.;Ko, S.L.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.156-164
    • /
    • 1996
  • Tool interference is one of the most critical problems in machining die cavities and punches. When machining concave or convex regions of cavities with large radius tool in rough cutting, the tool easily overcuts or undercuts the portions of the surface, which result in machining inaccuracy. So the generation of interference-free tool path must be required for more efficient rough cutting. In this paper, we present a method for modeling die cavities which consist of simple surface or analytic compoyund surfaces and present an algorithm for checking and removing the tool interference occurred in machining the die cavities. Using these algorithms, we can represent a die cavity, and check the interfer- ence regions, and then remove these interferences. Especially we focus on the side interference in the sides of analytic elements and base surface boundary.

  • PDF

The Improvement of Surface Roughness of Marine Propeller by Continuous Control of Cutter Posture in 5-Axis Machining (공구자세의 연속제어를 통한 선박용 프로펠러의 5축 가공 표면조도의 개선)

  • Son, Hwang-Jin;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2012
  • A marine propeller is designed for preventing cavitation priority. Cavitation is a phenomenon which is defined as the vibration or noise by dropping the pressure on the high-speed rotation of the propeller. There has to be a enough thrust on the low-speed rotation for preventing cavitation. Thus, it has to be considered in the increasing of the number of blade and the angle of wing to design the propeller. In addition, flow resistance will be increasing by narrowing the width between blades. So high quality surface roughness of the hub to minimize flow resistance is required. Interference problems with tool and neighboring surfaces often take place from this kind of characteristics of the propeller. During 5-Axis machining of these propellers, the excessive local interference avoidance, necessary to avoid interference, leads to inconsistency of cutter posture, low quality of machined surface. Therefore, in order to increase the surface quality, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. This study, by using a MC-space algorithm for interference avoidance and a MB-spline algorithm for continuous control, is intended to create a 5-Axis machining tool path with excellent surface quality. Also, an effectiveness is confirmed through a verification manufacturing.

A Study on Efficient Roughing of Impeller with 5-Axis NC Machine (임펠러의 효율적인 5축 NC 황삭가공에 관한 연구)

  • Cho, Hwan-Young;Jang, Dong-Kyu;Lee, Hi-Koan;Yang, Gyun-Eui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1917-1924
    • /
    • 2003
  • This paper proposes a roughing path generation method fer machining impeller with 5-axis machining center. Traditional researches are focus on finishing for machining impeller. To achieve efficient machining, roughing method must be studied. The proposed method consists two steps : One is to select optimal tool size and tool attitude by dividing cutting area into two regions to reduce cutting time. The regions are automatically divided by character point on the geometry of impeller blade. After dividing, the tool of the optimal size is selected for each divided region. The other is avoidance of tool interference. Tool interference in cutting areas is avoided by checking the distance between tool axis vector and ruling line on blade surface or approximated plan between ruling line. Using this method, the cutting time is reduced efficiently.

Automatic NC-Date Generation Method for 5-axis Cutting of Turbine-Blades by Finding Safe Heel-Angles and Adaptive

  • Piao, Cheng-Dao;Lee, Cheol-Soo;Cho, Kyu-Zong;Park, Gwang--Ryeol
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.753-761
    • /
    • 2004
  • In this paper, an efficient method for generating 5-axis cutting data for a turbine blade is presented. The interference elimination of 5-axis cutting currently is very complicated, and it takes up a lot of time. The proposed method can generate an interference-free tool path, within an allowance range. Generating the cutting data just point to the cutting process and using it to obtain NC data by calculating the feed rate, allows us to maintain the proper feed rate of the 5-axis machine. This paper includes the algorithms for: (1) CL data generation by detecting an interference-free heel angle, (2) finding the optimal tool path interval considering the cusp-height, (3) finding the adaptive feed rate values for each cutter path, and (4) the inverse kinematics depending on the structure of the 5-axis machine, for generating the NC data.

Comparative study of CL Z-map modeling for 3-axis NC machining (3축 NC 가공을 위한 CL Z-map 모델링 방법의 비교연구)

  • 박정환;정연찬;최병규
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.389-392
    • /
    • 2000
  • Gouge-free tool-path generation is an important issue in mold & die machining and researches on cutter interference avoidance can be found in many articles. One of the various methods is construction of tool-offlet surface or cutter-location (CL) surface on which the cutter-center point (CL-point) locates. Provided that the CL surface is represented in a suitable form, cutter-interference avoidance can be performed without the burden of computing CL data for every cutter-contact (CC) point. In the paper, various methods of constructing a CL surface in the z-map form are presented, where z-map is a special form of discrete nonparametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[i,j].

  • PDF

Comparative Study of CL Z-map Modeling for 3-Axis NC Machining (3축 NC 가공을 위한 CL Z-map 모델링 방법의 비교 연구)

  • Park, Jung-Whan;Chung, Yun-Chan;Choi, Byoung-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.325-335
    • /
    • 2000
  • Gouge-free tool-path generation is an important issue in mold & die machining and researches on cutter interference avoidance can be found in many articles. One of the various methods is construction of tool-offset surface of cutter-location (CL) surface on which the cutter-center point (CL-point) locates. Provided that the CL surface is represented in a suitable form, cutter-interference avoidance can be performed without the burden of computing CL data for every cutter-contact (CC) point. In the paper, various methods of constructing a CL surface in the z-map form are presented, where z-map is a special form of discrete nonparametric representation in which the height values at grid points on the xy-plane are stored as a 2D array z[i,j].

  • PDF