• 제목/요약/키워드: Tool Geometry

검색결과 542건 처리시간 0.027초

선삭에서 AE센서를 이용한 절삭성 평가 (Assessment of Cutting Performance Using AE Sensor in Turning)

  • 최원식
    • 센서학회지
    • /
    • 제8권6호
    • /
    • pp.469-475
    • /
    • 1999
  • 공작기계의 자동화 고속화에 의해 절삭 작업은 향상되고 있지만 선삭시 발생하는 연속형 고속형칩은 작업능률을 저하시킴으로 AE센서를 이용한 절삭 실험을 통하여 절삭 조건에 따른 AE 신호의 특징을 분석하고 칩과 관련된 신호특성을 분석결과 칩 형상에 가장 중요한 요인이 되는 것은 AE진폭 신호와 AE 에너지 신호였음을 확인하였으며, AE진폭 신호와 AE에너지 신호를 통계적 처리한 결과 에너지신호 보다는 진폭 신호의 첨도값이 선삭시 절삭특성을 잘 나타내 주고 있었으며, 비절삭에너지를 이용하여 절삭성능을 종합적으로 평가하였다.

  • PDF

STEP AP214 자동차 설계 데이터 정리 시스템 (Healing of STEP AP214 Automotive CAD Data)

  • 양정삼;한순흥
    • 한국CDE학회논문집
    • /
    • 제7권3호
    • /
    • pp.170-176
    • /
    • 2002
  • To exchange CAD data between heterogeneous CAD systems, we generally use a neutral format especially STEP, which is the international standard (ISO-10303) for product model data exchange. AP214 (Application Protocol) for the automotive industry not only takes into account geometry and organizational data, but also provides a classification mechanism for product modeling. When reading a STEP file during a design process that is exported from other CAD systems, it is a burden to a designer to go through the tedious process of removing duplicate or non-manifold entities, adjusting parts, and rearranging text. We analyze the structure of AP214 and develop a healing tool to solve the following problem. Without the assembly information in the Master workspace of CATIA, or to read a STEP file from Pro/Engineer, a designer should do a repetitive process of disintegrating an assembly into parts one by one. We have developed a post-processing tool for STEP AP214 that separates out a part from an assembly model and adjusts superfluous or useless entities using the ACIS kernel.

후방압출공정에서 치수정밀도 향상을 위한 초기소재형상 결정 (Determination of Initial Billet Shape to Improve Dimensional Accuracy in Backward Extruded Cups)

  • Kim, H.C.;Kim, T.H.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.129-135
    • /
    • 1997
  • Experimental studies have been carried out to obtain uniform cups by one operation of backward extrusion. A lot of factors on dimensional accuracy of backward extruded cups are billet material, billet shape, punch shape, punch velocity, geometry of tool, tool material, and lubrication etc. In manufacturing cup-shaped parts by backward extrusion, it is very important to design the initial billet shape or the preform. The objective of this paper is to find that the shape of the initial billet is related to dimensional accuracy and also to manufacture the more accurate product simultaneously reducing the loss of material as forming the shape of the initial billet by means of upsetting.

  • PDF

선삭가공에 있어서 선삭저항의 신호처리와 그 응용에 관한 연구(II) (A Study on the Signal Process of Cutting Forces in Turning and its Application (2nd Report) -Automatic Monitor of Chip Rorms using Cutting Forces-)

  • 김도영;윤을재;남궁석
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.85-94
    • /
    • 1990
  • In automatic metal cuttings, the chip control is one of the serious problems. So the automatic detection of chip forms is essential to the chip control in automatic metal cuttings. Cutting experiments were carried out under the variety of cutting conditions (cutting speed, feed, depth of cut and tool geometry) and with workpiece made of steel (S45C), and cutting forces were measured in-processing by using a piezoelectric type Tool Dynamometer. In this report, the frequency analysis of dynamic components, the upper frequency distributions, the ratio of RMS values, the numbers of null point and the probability density were calculated from the dynamic componeents of cutting forces filtered through various band pass filters. Experimental results showed that computer chip form monitoring system based on the cutting forces was designed and simulated and that 6 type of chip forms could be detected while in-process machining.

  • PDF

절삭가공에서 퍼지알고리즘을 이용한 칩형상 예측 (Chip Form Prediction using Fuzzy Logic in Turning)

  • 최원식
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.127-132
    • /
    • 2001
  • In turning, the chip may be produced in the form of continuous chip or discontinuous chip. The continuous chips are dangerous to the operator and difficult to be handled at high speed machining. The signal of AE(Acoustic Emission) is found out to be related to cutting conditions, tool materials, test conditions and tool geometry in turning. In this study, the relationship between AE signal and chip form was experimentally investigated. The experimental results show that the types of chip form are possible to be classified from the AE signal using fuzzy logic.

  • PDF

Performance Simulation of a Ramjet Using Visual C++ Program

  • Owino, George Omollo;Kong, Chang-Duk
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.499-502
    • /
    • 2008
  • This paper presents on research findings of how Visual C++ program can be used to generate codes capable of performing ramjet engine simulation To understand the diversity and applicability of this tool an arbitrary ramjet model will be considered for which generated output values will be compared with those from a commercial program GASTURB 9 iterated under the same input parameters. Several governing thermodynamic equations will first be discussed in order that we understand the fundamental idea behind values printed out on the GUI. C++ compiler was chosen as a tool of use due to its availability, ease of use, ability to compute functions faster and uniquely possible to make a stand alone GUI executable in DOS mode. The program is developed in such a way that given the ambient flight conditions, burner exit temperature and several geometry areas the program generates its own input values used in the succeeding stations. A close resemblance of output values that define performance and thermodynamic state of the engine was realized between GASTURB 9 and using this code made from C++ compiler.

  • PDF

로봇에 의한 디버링 작업의 자동화(I) (Robot Deburring Automation -Systems Using Solid Rotating Burr-)

  • 유범상;오영섭
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.30-47
    • /
    • 1997
  • This paper encompasses a general technology in robot deburring automation using solid rotaing burr tools. Deburring is a cumbersome area in finishing technology, where design concept and system implementation is based on knowhows and experiences rather then theoretical development. In the field engineering it is diffcult to find a clue to where and how to start the system design. This paper presents a guide inselection of tool concept of geometry and material. Also, the concept of tool compliance system is introduced, which is one of the most important factor in robot deburring. Typical problems encountered in the field are classified into 20 categories and the solutions are suggested by the proven technology from the expertise. Special problems in polymer and diecasting areas are also briefly mentioned.

  • PDF

단결정 다이아몬드공구 제작 기술을 통한 초정밀 미세패턴 가공 연구 (Research on ultra-precision fine-pattern machining through single crystal diamond tool fabrication technology)

  • 정성택;송기형;최영재;백승엽
    • Design & Manufacturing
    • /
    • 제14권3호
    • /
    • pp.63-70
    • /
    • 2020
  • As the consumer market in the VR(virtual reality) and the head-up display industry grows, the demand for 5-axis machines and grooving machines using on a ultra-precision machining increasing. In this paper, ultra-precision diamond tools satisfying the cutting edge width of 500 nm were developed through the process research of a focused ion beam. The material used in the experiment was a single-crystal diamond tool (SCD), and the equipment for machining the SCD used a focused ion beam. In order to reduce the influence of the Gaussian beam emitted from the focused ion beam, the lift-off process technology used in the semiconductor process was used. 2.9 ㎛ of Pt was coated on the surface of the diamond tool. The sub-micron tool with a cutting edge of 492.19 nm was manufactured through focused ion beam machining technology. Toshiba ULG-100C(H3) equipment was used to process fine-pattern using the manufactured ultra-precision diamond tool. The ultra-precision machining experiment was conducted according to the machining direction, and fine burrs were generated in the pattern in the forward direction. However, no burr occurred during reverse machining. The width of the processed pattern was 480 nm and the price of the pitch was confirmed to be 1 ㎛ As a result of machining.

크레이터 마모의 체적계산 및 분석법 (Crater Wear Volume Calculation and Analysis)

  • 정진석;조희근;윤문철
    • 한국생산제조학회지
    • /
    • 제18권3호
    • /
    • pp.248-254
    • /
    • 2009
  • The worn crater wear geometry of coated tools after machining has been configured by using Confocal Laser Scanning Microscopy(CLSM) and the Wavelet-based filtering technique. The CLSM can be well suited to construct the three-dimensional crater wear on the rake surfaces of coated tips. However, The raw heightness data of HEI(height encoded image) acquired by CLSM must be filtered due to the electronic and imaging noise occurring in constructing the crater image. So the Wavelet-based filtering algorithm is necessary to denoise the shape features in a micro scales so as to realize accurate crater wear topography analysis. The crater wear patterns filtered enable us to predict the crater wear shape in order to study the tool wear evolution. The study shows that the technique by combining the CLSM and Wavelet-based filtering is an excellent one to obtain the geometries of worn tool rake surfaces over a wide range of surface resolution in a micro scale.

  • PDF

MEMS 부품 제조를 위한 나노 리소그래피 공정의 3차원 분자동력학 해석 (Three Dimensional Molecular Dynamics Simulation of Nano-Lithography Process for Fabrication of Nanocomponents in Micro Electro Mechanical Systems (MEMS) Applications)

  • 김영석;이승섭;나경환;손현성;김진
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1754-1761
    • /
    • 2003
  • The atomic force microscopy (AFM) based lithographic technique has been used directly to machine material surface and fabricate nano components in MEMS (micro electro mechanical system). In this paper, three-dimensional molecular dynamics (MD) simulations have been conducted to evaluate the characteristic of deformation process at atomistic scale for nano-lithography process. Effects of specific combinations of crystal orientations and cutting directions on the nature of atomistic deformation were investigated. The interatomic force between diamond tool and workpiece of copper material was assumed to be derived from the Morse potential function. The variation of tool geometry and cutting depth was also evaluated and the effect on machinability was investigated. The result of the simulation shows that crystal plane and cutting direction significantly influenced the variation of the cutting forces and the nature of deformation ahead of the tool as well as the surface deformation of the machined surface.