• Title/Summary/Keyword: Tool Fracture

Search Result 405, Processing Time 0.031 seconds

Numerical Analysis of Interfacial Fracture Behavior in Repaired Structures. (구조 보강재와 피보강재 접합경계면의 역학적 특성에 관한 해석적 연구)

  • 박진완;신승교;임윤묵;김문겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.471-474
    • /
    • 1999
  • An interface always appears when a repair is applied to an aged infrastructure system for repair. These repaired structures have the high chance to fail along the interface because of the stress concentration/discontinuity along the interface. So, mechanical properties of the interface have much influence on the behavior of repaired structure systems. In this paper, numerical tool that can predict effectively the interfacial fracture behavior is developed using axial deformation link elements, and this numerical technique is applied to the interfacial failure behavior. The results coincide with the ultimate strength and failure profile on the interfacial behavior of carbon fiber sheets for strengthening with epoxy adhesion. Thus, the mechanical behavior of the interface up to failure can be predicted using numerical technique with the proposed axial deformation link elements.

  • PDF

Analysis of Cold Workability at the A16061 Bulk Material by Tension and Compression Tests (Al 6061 Bulk재에서 인장 및 압축 시험에 의한 상온 가공성 비교 분석)

  • 김국주;박종수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.74-79
    • /
    • 2003
  • When workability at the a certain bulk deformation process is defined as the maximum plastic deformation capability that the workpiece can sustain without causing any cracks or fracture, the workability is dependent on the microstructure, initial workpiece shape, stress state developed during the deformation process, strain rata and presence of the interfacial friction between workpiece and tool. For a review purpose, the workability definition and test methods are summarized depending on the applied stress state at bulk deformation process in Table 1 at the text. In this study, the cold workabilities of as-cast A16061 bulk material have been measured and comparatively analyzed at the primary tensile stress state by using tensile specimens, the primary compressive stress state by using cylindrical specimens, and the forming limit diagram by ductile fracture.

  • PDF

Analysis of Microcracking Behaviors of Solids under Multiple-Loading Conditions (다양한 하중 상태에서의 마이크로 크랙킹 거동 해석)

  • Kang, Sung-Soo;Kim, Hong-Gun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.23-29
    • /
    • 2007
  • Fracture behavior of brittle solids such as rocks, ceramics and concrete is closely related to microcracking. A meso-scale analysis method using the natural element method is proposed for the analysis of material damage of brittle microcracking solids. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the microcracks. The proposed meso analysis method is applied to the simulation of the microcracking behaviors of brittle solids subjected to uniaxial and biaxial macrostress. The obtained results are in good agreement with the results by computational damage mechanics model. The validity of the proposed method has been demonstrated by these numerical examples.

Machining and Crack Characteristics of the Glass Cap for OELD by Powder Blasting (파우더 블라스팅에 의한 OELD용 유리캡의 가공 및 크랙 특성)

  • Park, Dong-Sam;Kang, Dae-Kyu;Kim, Jeong-Keun;Seong, Enu-Je;Han, Jin-Yong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.51-58
    • /
    • 2006
  • The old technique of sandblasting which has been used for paint of scale removing, deburring and glass decorating has recently been developed into a powder blasting technique for brittle materials, capable of producing micro structures larger than $100{\mu}m$. Recently, this technique is applied to fabrication of the glass cap for OELD packaging. But, micro crack is generated on the blasted glass, which cause to decrease fracture strength. In this paper, we investigated the effect of blasting parameters on surface characteristics, surface shape and fracture strength of the powder blasted glass surface.

Effect of Fiber on the Acoustic Emission of High Performance Fiber-Reinforced Cement Composite (섬유종류에 따른 고인성 시멘트 복합체의 음향방출특성)

  • Kim, Yun-Soo;Jeon, Esther;Kim, Sun-Woo;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.342-345
    • /
    • 2006
  • The properties of reinforcing fiber, as tensile strength, aspect ratio and elastic modulus, have great effect on the fracture behavior of HPFRCC(High performance fiber-reinforced cementitious composite). Acoustic emission(AE) method was used to evaluate the characteristics of fracture process and the micro-failure mechanism of HPFRCC. For these purposes, three kinds of fibers were used : PP(Polypropylene), PE(Polyethylene), SC(Steel cord). In this study, the AE characteristics of HPFRCC with different fiber type(PE.15, PP2.0, SC0.75+PE0.75) distributions under four-point-bending were studied. The result show that the AE technique is a valuable tool to study the failure mechanism of HPFRCC.

  • PDF

Fracture of Grinding Wheels and Surface Roughness in Surface Grinding for the various Grinding Wheels and Grinding Conditions (평면연삭에서 숫돌의 종류와 연삭조건에 따른 표면거칠기 및 연삭숫돌의 파괴)

  • 오동석;이병곤;이종훈
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.118-122
    • /
    • 2001
  • In this study, the variation of surface roughness was tested in surface grinding for the three working materials SM45C, heat-treated SM45C, and gray cat iron. IT was performed for the various grinding wheels with two grain size #60, #100, and three grade I, O, R and various grinding depths and feeds, The fractural grinding depths which were obtained when the grinding wheels were destructed in surface grinding works, were examined and compared with the calculated value sug-gested in this study, The results showed that the surface roughness was decreased by decreasing grinding depth, and feed, and increasing grain size and grades. The fracture grinding depths were increased by increasing grain size, grade and feed.

  • PDF

Effect of the Mechanical Properties of Disk Material on the Cut-off Characteristics of Tungsten Carbide Tipped Circular Saw (초경팁 부착형 둥근톱의 절단 특성에 미치는 기판 재질의 영향)

  • Lee, Jae-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.883-886
    • /
    • 2001
  • The mechanical properties such as the Young's modulus, damping ratio, vibration mode and hardness of the disk materials heat-treated under various conditions are measured, and the relations between there properties and the cutting characteristics such as early tip fracture are examined. The results obtained from this study are as follows. The circular saw with the V-Cr added disk has higher young's modulus and damping ratio than the saw with STC5 disk, preventing the early fracture of tungsten carbide due to the above properties. The circular saw with the disk which is subjected to the heat treatment at the quenching temperature of $830^{\circ}C$ and at the temperature of $550^{\circ}C$ have the best tool life and surface roughness.

  • PDF

Mechanical Properties and Fracture Behavior of Cylindrical Shell Type for Unidirectional CFRP Composite Material under Tension Load (원통형 셀 구조를 갖는 한방향 CFRP 적층 복합재료의 정적인장파괴거동)

  • 오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.273-278
    • /
    • 1998
  • In this paper, basic micro-mechanical properties of unidirectional CFRP composite shell such as bonding strength, fiber volume fraction and void fraction are measured and tensile strength test is performed with a fixture. And then fracture surfaces are observed by SEM. In case of basic micro-mechanical properties, bonding strength is reduce with decreasing of radius of each ply in a shell for the effect of residual stress, fiber volume fraction is smaller than plate, and void fraction is vise versa. For these reason, tensile strength of shell is smaller than plate fabricated with same prepreg. For failure mode shell has many splitted part along its length, and it is assumed that this phenomenon is caused by the difference of bonding strength for residual stress.

  • PDF

Development of Numerical Tool considering Interfacial Fracture Behavior in Repaired RC Structure (보수.보강된 RC 구조물의 경계면 파괴를 고려한 수치해석 기법 개발)

  • 임윤묵;김문겸;신승교;고태호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.553-558
    • /
    • 2000
  • In this study, a numerical simulation that can effectively predict the interfacial fracture behavior in repaired structures is developed using the axial deformation link elements. In repaired structures, concrete and interface are considered as quais-brittle materials, and steel plate as a repair material and reinforcement are modeled as elasto-plastic materials. The behavior of repaired reinforced concrete structures under flexural loading conditions is numerically simulated, and compaired with experimental results. The strengthening effect according to the length and thickness of the repair material is studied and rip-off, debonding and rupture failure mechanism of interface between substrate and repair materials are detected. It is shown that the interface properties affect on the mechanical behavior of repaired structures. Therefore, the developed numerical method using axial deformation link elements can be used for determining the strengthening effects and failure mechanism of repaired structures.

  • PDF

Analysis of Axial Splitting of Circular Metal Tubes by Using Element Deletion Method (요소 삭제 방법을 사용한 원형 금속 관의 축방향 파단 해석)

  • Lee, Sang-Hoon;Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.496-503
    • /
    • 2008
  • With the improvement of computer power and technology, fracture modelling by finite element methods has become a topic of extensive studies. However, fracture simulation much limited to an academic study of crack propagation with a fine mesh. Element deletion method is a useful tool for estimating damage due to accidental or extreme loads on structures, provided that an effective and realistic criterion is established for simulating the material failure and subsequent element deletion. In this study, ABAQUS/Explicit is used to simulate the material failure on the basis of experimental results by X. Huang et al. Through numerical experiments, we suggest a formulation to determine the failure strain associated with the size and thickness of removed elements.