• Title/Summary/Keyword: Tool Compensation Line

Search Result 21, Processing Time 0.02 seconds

Development of an Automatic Tool Compensation System in NC Lathe Machine (NC 선반가공에서 자동공구보정시스템의 개발)

  • Ju, Sang-Yoon;Kang, Byeung-Phil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.47-54
    • /
    • 1999
  • Tool wear is one of major causes occurring defectives in NC machining. In this paper we developed an automatic tool compensation system for the NC lathe machining. The system compensates machining error without any help of operators whenever the specification of a part is out of a tolerance. The configuration of the automatic compensation system consists of a NC lathe, an autoloader, a sensor, and a PLC. The system is operated as follows. A workpiece loaded by the autoloader is machining on the NC lathe. Once the workpiece is machined to be turned to a part, it is moved onto the sensor to be measured. If the sensor detects a part out of tolerance, a tool compensation is made in the NC controller. The system gives a help in increasing the productivity by reducing occurrence of defective parts as well as by eliminating time for the tool compensation. Besides the productivity increase, the system calculates cumulative usage time of the tool and notices the tool replace time to a worker by an alarm signal. A case is introduced to show that the system can be applied effectively in a shop.

  • PDF

On-line Tool Deflection Compensation System for Precision End-milling (정밀 엔드밀링을 위한 실시간 공구처짐 보정시스템)

  • Yang, Min-Yang;Choe, Jong-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.189-198
    • /
    • 1997
  • This paper presents development of a practical tool deflection compensation system in order to reduce the machining error from the tool deflection compensation system in order to reduce the machining error from the tool deflection in the end-milling process. The devised system is a tool adapter which includes 1-axes force sensor for detecting tool deflection and 2-axes tool tilting device for adjusting tool position through computer interface on line process. Experimental in investigations for typical shaped workpieces representing various end milling situations are performed to verify the ability of the system to suppress the surface errors due to tool deflections. With the system, it is possible to get precise machining surface without any excessive machining error due to increased cutting force in more productive machining conditions.

On Error Modeling and Compensation of Machine Tools (공작기계 오차 모델링과 보정에 관한 연구)

  • Song, Il-Gyu;Choi, Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.98-107
    • /
    • 1996
  • The use of composite hyperpatch model is proposed to predict a machine tool positional error over the entire work space. This is an appropriate representation of the distorted work space. This model is valid for any configuration of 3-axis machine tool. Tool position, which is given NC data or CL data, contains error vector in actual work space. In this study, off-line compensation scheme was investigated for tool position error due to inaccuracy in machine tool structure. The error vector in actual work space is corrected by the error model using Newton-Raphson method. The proposed error compensation method shows the possibility of improving machine accuracy at a low cost.

  • PDF

정형가곡을 위한 공구경로 보상 : 윤곽가공을 중심으로

  • 서석환;조정훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.34-38
    • /
    • 1992
  • Geometry based CAD/CAM system is hard to achieve "net shape machining" For a net shape machining, the machining errors should be compensated by off-line CAD/CAM system followed by on-line control system. In this paper, we investigate an off-line compensation scheme for the machining errors due to tool deflection in contouring operation. The significance of the deflection errors is first shown, and a compensation is sought via modifying the nominal tool path. In modification, tool deflection amount is iteratively compensated until the deflection amount is iteratively compensated until the deflected path results in the desired contour within a tolerance. The path modification algorithm has been tested via computer simulation. The developed algorithm can be used as a postprocessor for the current CAD/CAM system based on geometric modeling as a means for enhancing the machining accuracy.

Machine Tool Error Compensation by using Measuring Plates (측정플레이트를 이용한 공작기계 오차보정)

  • 양종태;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.187-192
    • /
    • 1993
  • Thermal deformation causes large amount of machine tool errors. In order to compensate for thermal and geometric errors of the machine tool an off-line geometric adaptive control (GAC) scheme was developed. THe GAC method was realized by using a measuring plate made of precision spheres. Error vectors and volumetric errors were measured by the measuring plate. Error compensation models were obtained from error vectors and a kinematic chain of machine tools. Reliability of the GAC system of thermal and geometric errors were confrimed by large amount of experiments.

  • PDF

Algorithm of Thermal Error Compensation for the Line Center - System Interface - (CNC공작기계의 열변형 오차보정 (II) - 알고리즘 및 시스템 인터폐이스 중심 -)

  • 이재종;최대봉;박현구;류길상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.417-422
    • /
    • 2002
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been implemented on the machining center in order to compensate thermal error of machine tools under the real-time. The thermal errors are predicted using the neural network and multi-regression modeling methods. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

Development of a Tool Deflection Compensation System for Precision End-milling (고정밀 밀링가공을 위한 공구처짐 보정시스템 개발)

  • 최종근;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.42-46
    • /
    • 1993
  • This paper presents development of a pratical tool deflection compensation system in order to reduce the machining error by the tool deflection in the end-milling process. The system is a tool adapter which includes 2-axis force sensor for detecting tool deflection and 2-axis tool tilting device for adjusting tool position through computer interface in on-line process. In experiments, it is revealed that the force sensor applying parallel plate principle and strain gauge is proper to obtain dynamic process signal, and the tilting device using stepping motor and cam drive mechanism is suitable to have necessary action. By the system and control algorithm, it is possible to get precise machining surface profile without excessive machining error and overcut generated due to increased cutting force in more productive machining condition.

  • PDF

In-process calibration system suitable for unattended turning cells (자동 선삭 셀에 적합한 인프로세스 측정/ 검사 시스템)

  • 김선호;김선호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.804-808
    • /
    • 1991
  • In a transfer line with mass production capability, calibration systems are included in the process as a separate dedicated station. However, this method is not appropriate in an unattended FMC with flexibility. As the FMC produces vesatile parts with small batch sizes, more flexible calibration systems are required. In this paper, a calibration/inspection system suitable for an unattended turning cell is introduced. The system has functions of dimension calibration of parts by touch probes, tool wear compensation, and quality monitoring of parts. Furthermore, characteristics of errors in the system are identified and corresponding compensation methodology is suggested. An operation software was developed for efficient use of the system.

  • PDF

Determination of Reactive Power Compensation Considering Large Disturbances for Power Flow Solvability in the Korean Power System

  • Seo, Sang-Soo;Kang, Sang-Gyun;Lee, Byong-Jun;Kim, Tae-Kyun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.147-153
    • /
    • 2011
  • This paper proposes a methodology using a tool based on the branch-parameter continuation power flow (BCPF) in order to restore the power flow solvability in unsolvable contingencies. A specified contingency from a set of transmission line contingencies is modeled, considering the transient analysis and practice in the Korean power system. This tool traces a solution path that satisfies the power flow equations with respect to the variation of the branch parameter. At a critical point, in which the branch parameter can move on to a maximum value, a sensitivity analysis with a normal vector is performed to identify the most effective compensation. With the sensitivity information, the location of the reactive power compensation is determined and the effectiveness of the sensitivity information is verified to restore the solvability. In the simulation, the proposed framework is then applied to the Korean power system.

Compensation of Thermal Errors for the CNC Machine Tools (II) - Analysis of Error Compensation Algorithm for the PC-NC Controller - (CNC 공작기계의 열변형 오차 보정 (II) - PC-NC제어기용 오차보정 알고리즘 분석 -)

  • 이재종;최대봉;박현구
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.214-219
    • /
    • 2001
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been presented in order to compensate thermal error of machine tools under the real-time. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses, a designed spherical ball artifact, and five gap sensors. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF