• Title/Summary/Keyword: Tompkins method

Search Result 6, Processing Time 0.019 seconds

Development of Real-time QRS-complex Detection Algorithm for Portable ECG Measurement Device (휴대용 심전도 측정장치를 위한 실시간 QRS-complex 검출 알고리즘 개발)

  • An, Hwi;Shim, Hyoung-Jin;Park, Jae-Soon;Lhm, Jong-Tae;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.280-289
    • /
    • 2022
  • In this paper, we present a QRS-complex detection algorithm to calculate an accurate heartbeat and clearly recognize irregular rhythm from ECG signals. The conventional Pan-Tompkins algorithm brings false QRS detection in the derivative when QRS and noise signals have similar instant variation. The proposed algorithm uses amplitude differences in 7 adjacent samples to detect QRS-complex which has the highest amplitude variation. The calculated amplitude is cubed to dominate QRS-complex and the moving average method is applied to diminish the noise signal's amplitude. Finally, a decision rule with a threshold value is applied to detect accurate QRS-complex. The calculated signals with Pan-Tompkins and proposed algorithms were compared by signal-to-noise ratio to evaluate the noise reduction degree. QRS-complex detection performance was confirmed by sensitivity and the positive predictive value(PPV). Normal ECG, muscle noise ECG, PVC, and atrial fibrillation signals were achieved which were measured from an ECG simulator. The signal-to-noise ratio difference between Pan-Tompkins and the proposed algorithm were 8.1, 8.5, 9.6, and 4.7, respectively. All ratio of the proposed algorithm is higher than the Pan-Tompkins values. It indicates that the proposed algorithm is more robust to noise than the Pan-Tompkins algorithm. The Pan-Tompkins algorithm and the proposed algorithm showed similar sensitivity and PPV at most waveforms. However, with a noisy atrial fibrillation signal, the PPV for QRS-complex has different values, 42% for the Pan-Tompkins algorithm and 100% for the proposed algorithm. It means that the proposed algorithm has superiority for QRS-complex detection in a noisy environment.

A STATIC IMAGE RECONSTRUCTION ALGORITHM IN ELECTRICAL IMPEDANCE TOMOGRAPHY (임피던스 단층촬영기의 정적 영상 복원 알고리즘)

  • Woo, Eung-Je;Webster, John G.;Tompkins, Willis J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.5-7
    • /
    • 1991
  • We have developed an efficient and robust image reconstruction algorithm for static impedance imaging. This improved Newton-Raphson method produced more accurate images by reducing the undesirable effects of the ill-conditioned Hessian matrix. We found that our electrical impedance tomography (EIT) system could produce two-dimensional static images from a physical phantom with 7% spatial resolution at the center and 5% at the periphery. Static EIT image reconstruction requires a large amount of computation. In order to overcome the limitations on reducing the computation time by algorithmic approaches, we implemented the improved Newton-Raphson algorithm on a parallel computer system and showed that the parallel computation could reduce the computation time from hours to minutes.

  • PDF

Preparation of Al/RDX/AP Energetic Composites by Drowning-out/Agglomeration and Their Thermal Decomposition Characteristics (결정화/응집에 의한 구형 Al/RDX/AP 에너지 복합체 제조 및 그 열분해 특성)

  • Lee, Jeong-Hwan;Shim, Hong-Min;Kim, Jae-Kyeong;Kim, Hyoun-Soo;Koo, Kee-Kahb
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.214-220
    • /
    • 2017
  • The spherical Al/RDX/AP composites with an average size of $550{\mu}m$ were successfully prepared by drowning-out/agglomeration (D/A) process. The surface morphology and dispersion of Al particles of those composites were investigated using SEM and EDS (energy dispersive spectrometry). As a result of thermal analysis, the onset temperature of thermal decomposition of the Al/RDX/AP composites by the D/A process was found to decrease about $50^{\circ}C$ and their thermal stability was shown to be relatively enhanced due to the increase of activation energy compared to those of using the physical mixing method. In the first decomposition region of AP, Prout-Tompkins model was shown to describe well the thermal decomposition of both composites by the physical mixing and D/A process. On the other hand, in the second decomposition region of AP, the decomposition mechanisms of composites by the physical mixing and D/A process were explained by the zero-order and contracting volume model, respectively.

Identification of Individuals using Single-Lead Electrocardiogram Signal (단일 리드 심전도를 이용한 개인 식별)

  • Lim, Seohyun;Min, Kyeongran;Lee, Jongshill;Jang, Dongpyo;Kim, Inyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.42-49
    • /
    • 2014
  • We propose an individual identification method using a single-lead electrocardiogram signal. In this paper, lead I ECG is measured from subjects in various physical and psychological states. We performed a noise reduction for lead I signal as a preprocessing stage and this signal is used to acquire the representative beat waveform for individuals by utilizing the ensemble average. From the P-QRS-T waves, features are extracted to identify individuals, 19 using the duration and amplitude information, and 16 from the QRS complex acquired by applying Pan-Tompkins algorithm to the ensemble averaged waveform. To analyze the effect of each feature and to improve efficiency while maintaining the performance, Relief-F algorithm is used to select features from the 35 features extracted. Some or all of these 35 features were used in the support vector machine (SVM) learning and tests. The classification accuracy using the entire feature set was 98.34%. Experimental results show that it is possible to identify a person by features extracted from limb lead I signal only.

Acquisition and Classification of ECG Parameters with Multiple Deep Neural Networks (다중 심층신경망을 이용한 심전도 파라미터의 획득 및 분류)

  • Ji Woon, Kim;Sung Min, Park;Seong Wook, Choi
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.424-433
    • /
    • 2022
  • As the proportion of non-contact telemedicine increases and the number of electrocardiogram (ECG) data measured using portable ECG monitors increases, the demand for automatic algorithms that can precisely analyze vast amounts of ECG is increasing. Since the P, QRS, and T waves of the ECG have different shapes depending on the location of electrodes or individual characteristics and often have similar frequency components or amplitudes, it is difficult to distinguish P, QRS and T waves and measure each parameter. In order to measure the widths, intervals and areas of P, QRS, and T waves, a new algorithm that recognizes the start and end points of each wave and automatically measures the time differences and amplitudes between each point is required. In this study, the start and end points of the P, QRS, and T waves were measured using six Deep Neural Networks (DNN) that recognize the start and end points of each wave. Then, by synthesizing the results of all DNNs, 12 parameters for ECG characteristics for each heartbeat were obtained. In the ECG waveform of 10 subjects provided by Physionet, 12 parameters were measured for each of 660 heartbeats, and the 12 parameters measured for each heartbeat well represented the characteristics of the ECG, so it was possible to distinguish them from other subjects' parameters. When the ECG data of 10 subjects were combined into one file and analyzed with the suggested algorithm, 10 types of ECG waveform were observed, and two types of ECG waveform were simultaneously observed in 5 subjects, however, it was not observed that one person had more than two types.

Automatic Parameter Acquisition of 12 leads ECG Using Continuous Data Processing Deep Neural Network (연속적 데이터 처리 심층신경망을 이용한 12 lead 심전도 파라미터의 자동 획득)

  • Kim, Ji Woon;Park, Sung Min;Choi, Seong Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.107-119
    • /
    • 2020
  • The deep neural networks (DNN) that can replicate the behavior of the human expert who recognizes the characteristics of ECG waveform have been developed and studied to analyze ECG. However, although the existing DNNs can not provide the explanations for their decisions, those trials have attempted to determine whether patients have certain diseases or not and those decisions could not be accepted because of the absence of relating theoretical basis. In addition, these DNNs required a lot of training data to obtain sufficient accuracy in spite of the difficulty in the acquisition of relating clinical data. In this study, a small-sized continuous data processing DNN (C-DNN) was suggested to determine the simple characteristics of ECG wave that were not required additional explanations about its decisions and the C-DNN can be easily trained with small training data. Although it can analyze small input data that was selected in narrow region on whole ECG, it can continuously scan all ECG data and find important points such as start and end points of P, QRS and T waves within a short time. The star and end points of ECG waves determined by the C-DNNs were compared with the results performed by human experts to estimate the accuracies of the C-DNNs. The C-DNN has 150 inputs, 51 outputs, two hidden layers and one output layer. To find the start and end points, two C-DNNs were trained through deep learning technology and applied to a parameter acquisition algorithms. 12 lead ECG data measured in four patients and obtained through PhysioNet was processed to make training data by human experts. The accuracy of the C-DNNs were evaluated with extra data that were not used at deep learning by comparing the results between C-DNNs and human experts. The averages of the time differences between the C-DNNs and experts were 0.1 msec and 13.5 msec respectively and those standard deviations were 17.6 msec and 15.7 msec. The final step combining the results of C-DNN through the waveforms of 12 leads was successfully determined all 33 waves without error that the time differences of human experts decision were over 20 msec. The reliable decision of the ECG wave's start and end points benefits the acquisition of accurate ECG parameters such as the wave lengths, amplitudes and intervals of P, QRS and T waves.