• Title/Summary/Keyword: Tomography, emission computed

Search Result 396, Processing Time 0.026 seconds

Basic principles and applications of $^{18}F$-FDG-PET/CT in oral and maxillofacial imaging: A pictorial essay

  • Omami, Galal;Tamimi, Dania;Branstetter, Barton F.
    • Imaging Science in Dentistry
    • /
    • v.44 no.4
    • /
    • pp.325-332
    • /
    • 2014
  • A combination of positron emission tomography (PET) with $^{18}F$-labeled fluoro-2-deoxyglucose ($^{18}F$-FDG) and computed tomography ($^{18}F$-FDG-PET/CT) has increasingly become a widely used imaging modality for the diagnosis and management of head and neck cancer. On the basis of both recent literature and our professional experience, we present a set of principles with pictorial illustrations and clinical applications of FDG-PET/CT in the evaluation and management planning of squamous cell carcinoma of the oral cavity and oropharynx. We feel that this paper will be of interest and will aid the learning of oral and maxillofacial radiology trainees and practitioners.

Sequential Change of Hypometabolic Metastasis from Non-small-cell Lung Cancer on Brain FDG-PET/CT (연속적인 FDG-PET/CT 검사에서 섭취 감소로 관찰된 비소세포암의 뇌전이)

  • Park, Soon-Ah;Yang, Sei-Hoon;Yang, Chung-Yong;Choi, Keum-Ha
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.505-507
    • /
    • 2009
  • A 60-year-old woman, who had non-small-cell lung cancer (NSCLC) in left lower lobe underwent brain F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) for evaluation of cerebral metastasis. On follow-up FDG-PET/CT, only hypometaolic lesion was detected and progressed in right frontal lobe at 6 months and 10 months, later. Hypermetabolic metastasis was not detected even at last scan time of FDG-PET/CT. Brain MRI showed brain metastasis in right frontal lobe. As might be expected, the physician should take cerebral metastasis into consideration even though there is only hypometabolic change on subsequent FDG-PET/CT in patients with NSCLC.

Oral cancer diagnosed using PET/CT: A case report (PET/CT를 이용하여 진단한 구강암의 증례)

  • Kim Young-Hee;Yang Byoung-Eun;Cho Young-Min;Kim Seong-Gon
    • Imaging Science in Dentistry
    • /
    • v.36 no.2
    • /
    • pp.111-116
    • /
    • 2006
  • PET/CT is a new imaging technology that combines high-quality Positron Emission Tomography (PET) and Computed Tomography (CT). This imaging provides simultaneous anatomical and metabolic information. Therefore PET/CT is useful diagnostic modality for early detection of malignant tumor, accurate staging, decision on therapeutic plan, monitoring response to therapy and rapid detection of recurrence. We report oral and maxillofacial cancers diagnosed by using PET/CT and the usefulness of PET/CT in the evaluation of postoperative recurrence.

  • PDF

Improvement of signal and noise performance using single image super-resolution based on deep learning in single photon-emission computed tomography imaging system

  • Kim, Kyuseok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2341-2347
    • /
    • 2021
  • Because single-photon emission computed tomography (SPECT) is one of the widely used nuclear medicine imaging systems, it is extremely important to acquire high-quality images for diagnosis. In this study, we designed a super-resolution (SR) technique using dense block-based deep convolutional neural network (CNN) and evaluated the algorithm on real SPECT phantom images. To acquire the phantom images, a real SPECT system using a99mTc source and two physical phantoms was used. To confirm the image quality, the noise properties and visual quality metric evaluation parameters were calculated. The results demonstrate that our proposed method delivers a more valid SR improvement by using dense block-based deep CNNs as compared to conventional reconstruction techniques. In particular, when the proposed method was used, the quantitative performance was improved from 1.2 to 5.0 times compared to the result of using the conventional iterative reconstruction. Here, we confirmed the effects on the image quality of the resulting SR image, and our proposed technique was shown to be effective for nuclear medicine imaging.

Experimental evaluation of fuel rod pattern analysis in fuel assembly using Yonsei single-photon emission computed tomography (YSECT)

  • Choi, Hyung-joo;Cheon, Bo-Wi;Baek, Min Kyu;Chung, Heejun;Chung, Yong Hyun;You, Sei Hwan;Min, Chul Hee;Choi, Hyun Joon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1982-1990
    • /
    • 2022
  • The purpose of this study was to verify the possibility of fuel rod pattern analysis in a fresh fuel assembly using the Yonsei single-photon emission computed tomography (YSECT) system. The YSECT system consisted of three main parts: four trapezoidal-shaped bismuth germanate scintillator-based 64-channel detectors, a semiconductor-based multi-channel data acquisition system, and a rotary stage. In order to assess the performance of the prototype YSECT, tomographic images were obtained for three representative fuel rod patterns in the 6 × 6 array using two representative image-reconstruction algorithms. The fuel-rod patterns were then assessed using an in-house fuel rod pattern analysis algorithm. In the experimental results, the single-directional projection images for those three fuel-rod patterns well discriminated each fuel-rod location, showing a Gaussian-peak-shaped projection for a single 10 mm-diameter fuel rod with 12.1 mm full-width at half maximum. Finally, we successfully verified the possibility of the fuel rod pattern analysis for all three patterns of fresh fuel rods with the tomographic images obtained by the rotational YSECT system.

Newly-designed adaptive non-blind deconvolution with structural similarity index in single-photon emission computed tomography

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4591-4596
    • /
    • 2023
  • Single-photon emission computed tomography SPECT image reconstruction methods have a significant influence on image quality, with filtered back projection (FBP) and ordered subset expectation maximization (OSEM) being the most commonly used methods. In this study, we proposed newly-designed adaptive non-blind deconvolution with a structural similarity (SSIM) index that can take advantage of the FBP and OSEM image reconstruction methods. After acquiring brain SPECT images, the proposed image was obtained using an algorithm that applied the SSIM metric, defined by predicting the distribution and amount of blurring. As a result of the contrast to noise ratio (CNR) and coefficient of variation evaluation (COV), the resulting image of the proposed algorithm showed a similar trend in spatial resolution to that of FBP, while obtaining values similar to those of OSEM. In addition, we confirmed that the CNR and COV values of the proposed algorithm improved by approximately 1.69 and 1.59 times, respectively, compared with those of the algorithm involving an inappropriate deblurring process. To summarize, we proposed a new type of algorithm that combines the advantages of SPECT image reconstruction techniques and is expected to be applicable in various fields.

The Unnecessity of Positron Emission Tomography Computed Tomography in the Etiologic Evaluation of Neurodevelopmental Delay in Craniosynostosis Patients

  • Yang, Chae Eun;Park, Eun Kyung;Lee, Myung Chul;Shim, Kyu Won;Kim, Yong Oock
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.1
    • /
    • pp.21-24
    • /
    • 2017
  • Background: In evaluation of craniosynostosis patients in terms of neurodevelopmental delay, positron emission tomography computed tomography (PET-CT) scan can be used to assess brain abnormalities through glucose metabolism. We aimed to determine the unnecessity of PET-CT in this study. Methods: Thirty-eight patients diagnosed with craniosynostosis who underwent distraction osteogenesis from October, 2010 to November, 2013 were reviewed. Magnetic resonance imaging (MRI) and PET-CT scan were carried out for evaluation of the brain structure and function, whereas X-ray and CT scan were taken for evaluation of the skull. Results: Nine patients reported abnormal MRI findings which were not significant, and five patients showed local problem on brain on PET-CT scan. No correlation was found among them. Conclusion: PET-CT evaluation of possible abnormal brain findings do not affect surgical planning or require additional therapy. Preoperative PET-CT scan is not the essential study to get any etiologic information of the disease consequences or to establish the treatment plan.

Use of positron emission tomography-computed tomography to predict axillary metastasis in patients with triple-negative breast cancer

  • Youm, Jung Hyun;Chung, Yoona;Yang, You Jung;Han, Sang Ah;Song, Jeong Yoon
    • Korean Journal of Clinical Oncology
    • /
    • v.14 no.2
    • /
    • pp.135-141
    • /
    • 2018
  • Purpose: Axillary lymph node dissection (ALND) and sentinel lymph node biopsy (SLNB) are important for staging of patients with node-positive breast cancer. However, these can be avoided in select micrometastatic diseases, preventing postoperative complications. The present study evaluated the ability of axillary lymph node maximum standardized uptake value (SUVmax) on positron emission tomography-computed tomography (PET-CT) to predict axillary metastasis of breast cancer. Methods: The records of invasive breast cancer patients who underwent pretreatment (surgery and/or chemotherapy) PET-CT between January 2006 and December 2014 were reviewed. ALNs were preoperatively evaluated by PET-CT. Lymph nodes were dissected by SLNB or ALND. SUVmax was measured in both the axillary lymph node and primary tumor. Student t-test and chi-square test were used to analyze sensitivity and specificity. Receiver operating characteristic (ROC) and area under the ROC curve (AUC) analyses were performed. Results: SUV-tumor (SUV-T) and SUV-lymph node (SUV-LN) were significantly higher in the triple-negative breast cancer (TNBC) group than in other groups (SUV-T: 5.99, P<0.01; SUV-LN: 1.29, P=0.014). The sensitivity (0.881) and accuracy (0.804) for initial ALN staging were higher in fine needle aspiration+PET-CT than in other methods. For PET-CT alone, the subtype with the highest sensitivity (0.870) and negative predictive value (0.917) was TNBC. The AUC for SUV-LN was greatest in TNBC (0.797). Conclusion: The characteristics of SUV-T and SUV-LN differed according to immunohistochemistry subtype. Compared to other subtypes, the true positivity of axillary metastasis on PET-CT was highest in TNBC. These findings could help tailor management for therapeutic and diagnostic purposes.

Positron Emission Tomography/Computed Tomography Features of Canine Lymphoma (Positron Emission Tomography/Computed tomography를 이용한 개 림프종의 영상 평가)

  • Park, Seungjo;Kwon, Seong-young;Min, Jung-Joon;Choi, Jihye
    • Journal of Veterinary Clinics
    • /
    • v.33 no.1
    • /
    • pp.51-57
    • /
    • 2016
  • In this study, the features of canine lymphoma on fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) were evaluated in three small breed dogs. In case 1, ultrasonography and CT indicated neoplastic involvement of the sternal, right axillary, submandibular, lower cervical, tracheobronchial, mesenteric, and sublumbar lymph nodes; spleen; and liver. However, intense FDG uptake on PET/CT images was detected only for the lymph nodes and spleen. No FDG uptake by the liver was detected for case 1 despite the confirmation of lymphoma by cytology. In case 2, ultrasonography and CT indicated neoplastic involvement of the axillary, mesenteric, and sublumbar lymph nodes and the spleen, while intense FDG uptake on PET/CT images was detected for the axillary and a few mesenteric lymph nodes, and the spleen. FDG uptake was additionally observed from popliteal lymph nodes, however there was no uptake by the sublumbar lymph nodes and some mesenteric lymph nodes. In case 3, neoplastic changes in the splenic, mesenteric, and sublumbar lymph nodes and spleen were suspected on ultrasonography, and lower cervical and popliteal lymph node involvements were additionally detected on PET/CT. Compared to ultrasonography, repeated PET/CT showed increased FDG uptake by the lymph nodes at an earlier stage after chemotherapy in case 3. This study illustrated the features of PET/CT in canine lymphomas and compared those to ultrasonography and CT findings. FDG uptakes were not detected from some lesions which were suspected to be neoplastic involvement in case 1 and 2. We could not clearly explain the reason of this result in the present study because cytological or histological examination was not performed for lesions that showed different results on ultrasonography, CT, and PET/CT. Further studies on the subclassification of canine lymphoma and the sensitivity and specificity of PET/CT for the detection of canine lymphoma are required. PET/CT data can provide useful information for predicting the therapeutic response at an early stage after treatment.