• 제목/요약/키워드: Toluene Vapor

검색결과 103건 처리시간 0.027초

톨루엔-크레졸의 정압 기-액 평형 (Isobaric Vapor-Liquid Equilibrium of Toluene and Cresol Systems)

  • 강동육;장회구;한창남;노선균;조동련;강춘형
    • Korean Chemical Engineering Research
    • /
    • 제47권6호
    • /
    • pp.755-761
    • /
    • 2009
  • 일반적으로 비등점의 차이가 큰 물질들은 그 물리적 성질의 차이로 인해 혼합물에서 비이상적인 상거동을 보이며, 이러한 혼합물의 상거동 특성을 이해하기 위해서는 정확한 실험적 데이터가 필요하다. 본 연구에서는 재순환 평형조가 포함된 기-액 상평형 장치를 사용하여 10, 30, 60 kPa에서 톨루엔과 크레졸 혼합물에 대한 정압 기-액 평형 실험을 행하였다. 측정한 기-액 평형 데이터는 NRTL과 UNIQUAC 모델식을 이용하여 잘 적합할 수 있었으며 Gibbs/Duhem 식에 근거한 열역학적 건전성 테스트를 수행하여 실험결과의 건전성을 확인하였다. 한편, 혼합물의 과잉몰부피를 측정하여 Redlich-Kister 다항식으로 나타내었다.

BTX(Benzene, Toluene, Xylenes)의 자연발화온도와 발화지연시간의 측정 (Measurements of Autoigniton Temperature(AIT) and Time Lag of BTX(Benzene, Toluene, Xylenes))

  • 하동명
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.45-52
    • /
    • 2006
  • The AITs(autoignition temperatures) describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The AITs are often used as a factor in determining the upper temperature limit for processing operations and conditions for handling, storage and transportation, and in determining potential fire hazard from accidental contact with hot surfaces. The measurement AITs are dependent upon many factors, namely initial temperature, pressure, volume, fuel/air stoichiometry, catalyst material, concentration of vapor, time lag. Therefore, the AITs reported by different ignition conditions are sometimes significantly different. This study measured the AITs of benzene, toluene and xylene isomers from time lag using AS1M E659-78 apparatus. The experimental ignition delay times were a good agreement with the calculated ignition delay times by the proposed equations wtih a few A.A.D.(average absolute deviation). Also The experimental AITs of benzene, toluene, o-xylene, m-xylene and p-xylene were $583^{\circ}C,\;547^{\circ}C,\;480^{\circ}C,\;587^{\circ}C,\;and\;557^{\circ}C$, respectively.

Adsorption of volatile organic compounds using activated carbon fiber filter in the automobiles

  • Moon, Hyung Suk;Kim, In Soo;Kang, Sin Jae;Ryu, Seung Kon
    • Carbon letters
    • /
    • 제15권3호
    • /
    • pp.203-209
    • /
    • 2014
  • The adsorption of volatile organic compounds (VOCs) was carried out using an activated carbon fiber (ACF) filter in an automobile. The adsorption capacities of formaldehyde, toluene, and benzene on an ACF filter were far better than those of a polypropylene (PP) mat filter and combined (PP+activated carbon) mat filter by batch adsorption in a gas bag. In a continuous flow of air containing toluene vapor through an ACF packed bed, the breakpoint time was very long, the length of the unused bed was short, and sharp "S" -type breakthrough curve was plotted soon after breakpoint, showing a narrow mass transfer zone of toluene on the ACF. The adsorption amount of toluene on the ACF filter was proportional to the specific surface area of the ACF; however, the development of mesopores 2-5 nm in size on the ACF was very effective with regard to the adsorption of toluene. The ACF air clarifier filter is strongly recommended to remove VOCs in newly produced automobiles.

공기중 유기용제 혼합물 측정방법의 비교연구 (Comparison of Sampling Methods for Determining Airborne Mixture of Organic Solvents)

  • 천미혜;백남원
    • 한국산업보건학회지
    • /
    • 제1권1호
    • /
    • pp.16-28
    • /
    • 1991
  • A study on comparison of standard charcoal tube method, infrared gas analyzer, and detector tube method were conducted. Measurements were performed simultaneously at same sampling points in an air chamber containing benzene, toluene and xylene vapors. Charcoal tube samles were collected at sampling flowrates of 0.05, 0.2, 0.5, and 1.0 1pm. Results are as follows : 1. Coefficients of variation of results with charcoal tube method for bezene, toluene and xylene mixture vapor were 14.34 % in benzene(0.28-11.12 ppm), 9.20 % in toluene (2.68-135.09 ppm) and 10.21 % in xylene (2.56-82.64 ppm), respectively. 2. Results of infrared gas analyzer in mixture air were non-specific on benzene and toluene. Ratio of results of infrared gas analyzer to those of charcoal tube on benzene, toluene and xylene were 696.4 %, 30.3 % and 36.6 %, respectively. 3. Ratio of responses of detector tubes to those of charcoal tube were 49.4 % in benzene, 22.1 % in toluene and 223.9 % in xylene. Xylene detector tube were interfered by toluene greately. 4. Collection efficiencies of charcoal tubes at low concentraton(benzene : 1 ppm, toluene : 10 ppm, xylene : 10 ppm) were stable on various flowrate from 0.05 to 1.0 1pm, but at high concentrations the efficiency decreased at high flowrate above 0.5 1pm. 5. Within the saturation capacity of charcoal, collection effiency decreased at 0.5-1.0 1pm. Smpling feowrates of 0.05-0.20 1pm were appropriate for sampling organic vapors.

  • PDF

유증기를 구성하는 주요 10종류 성분의 온도에 따른 흡·탈착특성 비교 (Comparisons of Adsorption-Desorption Characteristics of Major 10 Kinds Components Consisting of Gasoline Vapor)

  • 이송우;나영수;이민규
    • 한국환경과학회지
    • /
    • 제23권9호
    • /
    • pp.1593-1600
    • /
    • 2014
  • Adsorption and desorption characteristics of the representative 10 kinds components consisting of gasoline vapor on activated carbon were investigated at the temperature range of $-30^{\circ}C{\sim}25^{\circ}C$. The breakthrough curves of each vapors obtained by the Thomas model were well described the breakthrough experimental results of this study. The breakthrough times of each vapors were correlated with the molecular weight, density, and vapor pressure. The breakthrough times had greater correlation with boiling point than molecular weight and density. The slope of the breakthrough curve was a proportional relationship with the rate constant (k) of Thomas model expression. The higher the slope of the breakthrough curve, the rate constant was larger. The biggest slope vapor had the smallest adsorption capacity ($q_e$). Adsorption and desorption characteristics of mixed vapor similar to the gasoline vapor were studied at room temperature ($25^{\circ}C$). The mixed vapor consisting of 9 components; group A (pentane, hexene, hexane), group B (benzene, toluene), group C (octane, ethylbenzene, xylene, nonane) was examined. Group A was not nearly adsorbed because of substitution by group C, and the desorption capacity of group A was smaller than group C. The adsorbed substances were confirmed to be Group C.

유기용제 측정을 위한 국산 수동식 시료채취기의 현장평가 (Field Evaluation of Korean Passive Sampler for Organic Vapor)

  • 백남원;윤충식
    • 한국산업보건학회지
    • /
    • 제8권1호
    • /
    • pp.124-132
    • /
    • 1998
  • The Korean-made passive samplers were evaluated at the working environment for field testing. Tested materials were n-hexane, toluene and trichloroethylene. The performance of passive samplers depended on types and concentrations of organic vapors. Sampling rates were not steady until certain concentrations. The optimum concentration for determination of airborne toluene by passive samplers was equal to or over 10 ppm which is 1/10 of the Korean occupational exposure limit. Optimum concentration of n-hexane was equal to and over 1 ppm which is 1/50 of Korean occupational exposure limit. But for trichloroehtylene, coefficient of variation was 53.5 %. Passive samplers may be used for determination of n-hexane. For other materials, further study on the performance of Korean-made passive samplers is required.

  • PDF

활성탄 고정층에 있어서 유기용제의 흡착평형 (Adsorption Equilibria of Organic Solvent in an Activated Carbon Fixed Bed)

  • 김정걸;방영해;이영세
    • 한국산업융합학회 논문집
    • /
    • 제8권1호
    • /
    • pp.37-45
    • /
    • 2005
  • Adsorption equilibrium data of pure solvent vapors (n-Hexane, Toluene, MEK) as well as their binary mixtures on activated carbon (sorbonorit $B_4$) were experimentally determined in the range of 293.2~323.2 K and beyond saturated vapor pressure corresponding to experimental temperature. Langmuir, Freundlich, LRC, W-VSM, FH-VSM were estimated for the predication of single component as well as binary mixtuer systems. The isosteric heat of adsorption at infinite dilution of pure n-hexane, toluene, MEK on activated carbon were 45.18, 25.85, 34.62 Kcal/mol, respectively, also, n-hexane-toluene binary adsorption of activated carbon formed an azeotrope at 293.2 K and total pressure 5.1~10.3 mmHg.

  • PDF

유증기 회수설비 유무에 따른 주유소 근로자들의 요중 trans, trans-Muconic acid, Hippuric acid에 관한 연구 (A Study on Urinary Trans, Trans-Muconic acid, Hippuric acid of gas station worker according to the use of gasoline vapor recovery system)

  • 최재준;원종욱;김치년;노재훈
    • 한국산업보건학회지
    • /
    • 제24권2호
    • /
    • pp.152-159
    • /
    • 2014
  • Objectives: This study aims to investigate the excretion aspect of urinary t, t-MA and hippuric acid by measuring concentrations of urinary metabolites according to the use of gasoline vapor recovery system. Materials:In order to analyze urinary metabolites, samples from the 23 gas station workers ten gas stations in the Seoul and Gyeonggi Province area were collected once daily after work. In addition, a survey was conducted on work factors and lifestyle habits as factors affecting the concentration of urinary metabolites. Results: The average concentrations of t, t-MA and hippuric acid after work were $0.124{\pm}0.177mg/g$ creatinine and $0.557{\pm}0.251g/g$ creatinine among workers at gas stations where gasoline vapor recovery systems were installed. The average concentrations of t, t-MA and hippuric acid were $0.160{\pm}0.113mg/g$ creatinine and $0.682{\pm}0.619g/g$ creatinine among workes at gas stations where gasoline vapor recovery systems were not installed. Average concentrations were higher at gas stations where a gasoline vapor recovery system was not installed, but the differences were not statistically significant differences. Urinary t, t-MA and hippuric acid average concentrations of smokers and non-smokers were higher in the gas stations where gasoline a vapor recovery system was not installed. T, t-MA as a factor evaluation affecting the concentration of urinary metabolites was not statistically significant in all factors, while hippuric acid was statistically significant only for age(p=0.024). Conclusions: The average concentrations of urinary t, t-MA and hippuric acid were higher in gas stations where gasoline vapor recovery systems were not installed compared to gas stations where such a system was installed. There needs to be an assessment of biological monitoring according to refueling activity considering skin absorption of benzene and toluene and presence of gasoline vapor recovery system.