• Title/Summary/Keyword: Toll-like receptor 4

Search Result 220, Processing Time 0.019 seconds

Change in intestinal alkaline phosphatase activity is a hallmark of antibiotic-induced intestinal dysbiosis

  • Wijesooriya Mudhiyanselage Nadeema Dissanayake;Malavige Romesha Chandanee;Sang-Myeong Lee;Jung Min Heo;Young-Joo Yi
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1403-1413
    • /
    • 2023
  • Objective: Intestinal alkaline phosphatase (IAP) maintains intestinal homeostasis by detoxifying bacterial endotoxins and regulating gut microbiota, and lipid absorption. Antibiotics administered to animals can cause gut dysbiosis and barrier disruption affecting animal health. Therefore, the present study sought to investigate the role of IAP in the intestinal environment in dysbiosis. Methods: Young male mice aged 9 weeks were administered a high dose of antibiotics to induce dysbiosis. They were then sacrificed after 4 weeks to collect the serum and intestinal organs. The IAP activity in the ileum and the level of cytokines in the serum samples were measured. Quantitative real-time polymerase chain reaction analysis of RNA from the intestinal samples was performed using primers for tight junction proteins (TJPs) and proinflammatory cytokines. The relative intensity of IAP and toll-like receptor 4 (TLR4) in intestinal samples was evaluated by western blotting. Results: The IAP activity was significantly lower in the ileum samples of the dysbiosis-induced group compared to the control. The interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha concentrations were significantly higher in the ileum samples of the dysbiosis-induced group. The RNA expression levels of TJP2, claudin-3, and claudin-11 showed significantly lower values in the intestinal samples from the dysbiosis-induced mice. Results from western blotting revealed that the intensity of IAP expression was significantly lower in the ileum samples of the dysbiosis-induced group, while the intensity of TLR4 expression was significantly higher compared to that of the control group without dysbiosis. Conclusion: The IAP activity and relative mRNA expression of the TJPs decreased, while the levels of proinflammatory cytokines increased, which can affect intestinal integrity and the function of the intestinal epithelial cells. This suggests that IAP is involved in mediating the intestinal environment in dysbiosis induced by antibiotics and is an enzyme that can potentially be used to maintain the intestinal environment in animal health care.

Effect of S100A8 and S100A9 on expressions of cytokine and skin barrier protein in human keratinocytes

  • MUN JEONG KIM;MI AE IM;JI‑SOOK LEE;JI YOUNG MUN;DA HYE KIM;AYOUNG GU;IN SIK KIM
    • Molecular Medicine Reports
    • /
    • v.20 no.3
    • /
    • pp.2476-2483
    • /
    • 2019
  • Atopic dermatitis (AD ) is an inflammatory skin disorder caused by immunological dysregulation and genetic factors. Whether the expression levels of cytokine and skin barrier protein were altered by S100 calcium binding protein A8 (S100A8) and S100A9 in human keratinocytic HaCaT cells was examined in the present study. Alterations of cytokine expression were examined by ELI SA following treatment with S100A8/9 and various signal protein-specific inhibitors. Activation of the mitogen activated protein kinase (MAPK) pathway and nuclear factor (NF)-κB was evaluated by using western blotting and an NF-κB activity test, respectively. The expression levels of interleukin (IL )-6, IL- 8 and monocyte chemoattractant protein-1 increased following treatment with S100A8 and S100A9, and the increase was significantly blocked by specific signaling pathway inhibitors, including toll-like receptor 4 inhibitor (TLR 4i), rottlerin, PD98059, SB203580 and BAY-11-7085. Extracellular signal-regulated kinase (ER K) and p38 MAPK pathways were activated in a time-dependent manner following treatment with S100A8 and S100A9. Phosphorylation of ER K and p38 MAPK were blocked by TLR 4i and rottlerin. S100A8 and S100A9 induced translocation of NF-κB in a time-dependent manner, and the activation of NF-κB was inhibited by TLR 4i, rottlerin, PD98059 and SB203580. In addition, S100A8 and S100A9 decreased the expression of skin barrier proteins, filaggrin and loricrin. These results may help to elucidate the pathogenic mechanisms of AD and develop clinical strategies for controlling AD.

Inhibitory effect of carvacrol on lipopolysaccharide-induced memory impairment in rats

  • Lee, Bombi;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.27-37
    • /
    • 2020
  • Neuroinflammation is an important process underlying a wide variety of neurodegenerative diseases. Carvacrol (CAR) is a phenolic monoterpene commonly used as a food additive due to its antibacterial properties, but it has also been shown to exhibit strong antioxidative, anti-inflammatory, and neuroprotective effects. Here, we sought to investigate the effects of CAR on inflammation in the hippocampus and prefrontal cortex, as well as the molecular mechanisms underlying these effects. In our study, lipopolysaccharide was injected into the lateral ventricle of rats to induce memory impairment and neuroinflammation. Daily administration of CAR (25, 50, and 100 mg/kg) for 21 days improved recognition, discrimination, and memory impairments relative to untreated controls. CAR administration significantly attenuated expression of several inflammatory factors in the brain, including interleukin-1β, tumor necrosis factor-α, and cyclooxygenase-2. In addition, CAR significantly increased expression of brain-derived neurotrophic factor (BDNF) mRNA, and decreased expression of Toll-like receptor 4 (TLR4) mRNA. Taken together, these results show that CAR can improve memory impairment caused by neuroinflammation. This cognitive enhancement is due to the anti-inflammatory effects of CAR medicated by its regulation of BDNF and TLR4. Thus, CAR has significant potential as an inhibitor of memory degeneration in neurodegenerative diseases.

Associations of Polymorphisms in Four Immune-related Genes with Antibody Kinetics and Body Weight in Chickens

  • Ahmed, A.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1089-1095
    • /
    • 2010
  • Four biological candidate genes, natural resistance associated macrophage protein 1 (SLC11A1 or NRAMP), prosaposin (PSAP), interferon Gamma (IFNG), and toll-like receptor 4 (TLR4), were examined to identify single nucleotide polymorphisms (SNP) and associations of the SNP with antibody response kinetics in hens. An $F_2$ population was produced by mating $G_0$ highly inbred (<99%) males of two MHC-congenic Fayoumi lines with highly inbred Leghorn hens. The $F_2$ hens (n = 158) were injected twice with SRBC and whole, fixed Brucella abortus (BA). Blood samples were obtained before each immunization, at 7 d after primary immunization, and at several time points after secondary immunization. Minimum titers (Ymin) and the time needed to reach them (Tmin), and maximum (Ymax) titers and the time needed to reach them (Tmax), were estimated from the seven post-secondary immunization titers using a nonlinear regression model. The $F_2$ hens were genotyped for the four candidate genes by using PCR-RFLP for one SNP per gene, which identified the parental allele. General linear models were used to test associations of SNP genotypes with antibody response parameters and BW measured at 4 ages. The IFNG SNP was highly significantly (p<0.0125) associated with primary response to SRBC, Tmin to BA, Ymin to BA, and 12-week BW. The current study demonstrated that the novel IFNG promoter SNP was associated with antibody kinetics for BA and SRBC in laying hens, and also with BW, suggesting that this cytokine may play a pivotal role in the relationship between immune function and growth.

Effect of Loranthi Ramuluswatet Extract on Macrophages Activation and Th1 Response (상기생 물추출물이 대식세포 활성화와 Th1 반응에 미치는 효과)

  • Shin, Hye-Young;Zhang, Wen-Ji;Kim, Youn-Chul;Yun, Yong-Gab;Park, Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.171-175
    • /
    • 2008
  • In the recently, increased concern has been focused on the pharmacology and clinical utility of herbal extracts and derivatives as a drug or adjunct to chemotherapy and immunotherapy. Here we investigated the effect of the water extract of Loranthi Ramulus (LR) in production of inflammatory mediators and expression of toll-like receptor (TLR)-4, CD14 from peritoneal macrophage. We assayed the effect of LR water extract in cell proliferation in vitro and Th1/Th2 cytokine level in vivo. In peritoneal macrophages, water extract of LR water extract increased the production of Nitric oxide (NO) and $TNF-{\alpha}$. Also, LR water extract increased Con A-induced cell proliferation and IgG1, IgG2a level in serum. However, i.p. injection of water extract of LR water extract did not affect the level of $TNF-{\alpha}$, $IFN-{\gamma}$, IL-2, IL-4 and IL-5 in serum of mice. These studies indicate that LR water extract induces macrophage activation and suggest the possible use of LR water extract in macrophage-based immunotherapies.

Immune-modulator Effect of Zanthoxyli Pericarpium Watet Extract (천초 추출물의 면역 조절 효과)

  • Shin, Hye-Young;Chang, In-Ae;Zhang, Wen-Ji;Kim, Youn-Chul;Yun, Yong-Gab;Park, Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.2
    • /
    • pp.410-414
    • /
    • 2008
  • In the recently, increased concern has been focused on the pharmacology and clinical utility of herbal extracts and derivatives as a drug or adjunct to chemotherapy and immunotherapy. Here we investigated the modulatory effects of the extract of Zanthoxyli Pericarpium (ZP) in production of inflammatory mediators from Raw264.7 cells and expression of CD86, CD14, toll-like receptor (TLR)-4 from peritoneal macrophage. ZP enhanced the production of NO and $TNF-{\alpha}$ as well as mRNA expression of iNOS and $TNF-{\alpha}$. Treatment of peritoneal macrophage with ZP resulted in the enhanced cell-surface molecules expression of CD86, CD14 and TLR4. We assayed the effect of ZP in cell proliferation and production of $IFN-{\gamma},\;TNF-{\alpha}$. ZP increased Con A-induced cell proliferation and production of $IFN-{\gamma},\;TNF-{\alpha}$. These studies indicate that ZP induces macrophage activation and suggest the possible use of ZP in macrophage-based immunotherapies

Anti-inflammatory effects of DATS via suppression of cross talk between the TLR4/NF-κB and CXCL12/CXCR4 pathways in LSP-stimulated RAW 264.7 macrophages (LSP로 유도된 RAW 264.7 대식세포에서 TLR4/NF-κB와 CXCL12/CXCR4 경로 억제를 통한 DATS의 항염증 효과)

  • Jeong, Yong Tae;Hwang, Buyng Su;Kim, Min-Jin;Shin, Su Young;Oh, Young Taek;Kim, Chul Hwan;Eom, Jung Hye;Lee, Seung Young;Choi, Kyung Min;Jeong, Jin-Woo;Cho, Pyo Yun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.113-113
    • /
    • 2019
  • Diallyl trisulfide (DATS) is an organic polysulfide compound found in garlic. Although certain studies have demonstrated that DATS possesses strong anti-inflammatory activity, the underlying molecular mechanisms remain largely unresolved. In this study, we examined whether DATS exerts anti-inflammatory activity and investigated the possible mechanisms. Our results indicated that DATS significantly suppressed the lipopolysaccharide (LPS)-induced release of nitric oxide (NO) and prostaglandin E2 by inhibiting inducible NO synthase and cyclooxygenase-2 expression at the transcriptional and post-transcriptional levels in RAW 264.7 macrophages. DATS also down-regulated Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 expression, and inhibited nuclear translocation of nuclear transcription factor-kappa B (NF-${\kappa}B$) in LPS-stimulated 264.7 macrophages. Furthermore, we found that these inhibitory effects of DATS were associated with the inhibition of chemokine receptor (CXCR4) and ligand (CXCL12) expression, and reactive oxygen species generation. Overall, the present data indicated that DATS had anti-inflammatory effects on LPS-activated macrophages, possibly via inhibiting the TLR4/NF-kB and/or chemokine signaling pathways, and DATS could be a potential drug therapy for inflammation and its associated diseases.

  • PDF

Anti-inflammatory Effects of Amentoflavone on Modulation of Signal Pathways in LPS-stimulated RAW264.7 Cells

  • Lee, Eun-Jung;Shin, So-Young;Kim, Jin-Kyoung;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2878-2882
    • /
    • 2012
  • Amentoflavone is naturally occurring bioflavonoid that is found in a number of plants. In this paper, the anti-inflammatory activity of amentoflavone in LPS-stimulated macrophages and its mode of action were examined. Using LPS-stimulated RAW264.7 macrophage cells, we found that amentoflavone exerted anti-inflammatory activities through inhibition of nitric oxide (NO) production and tumor necrosis factor (TNF)-${\alpha}$ and macrophage inflammatory protein (MIP)-2 secretion. Amentoflavone (1.0-20 ${\mu}M$) gradually inhibited nitrite production without cytotoxicity. Amentoflavone (1.0 and 10 ${\mu}M$) effectively suppressed both TNF-${\alpha}$ and MIP-2 cytokine release from LPS-stimulated RAW264.7 cells. The expression of mIL-$1{\beta}$ and mMIP-2 cytokine mRNAs was completely inhibited while expression of mMIP-1 was effectively suppressed and mTNF-${\alpha}$ expression was slightly inhibited by 10 ${\mu}M$ amentoflavone. We also demonstrated that the innate immune response to amentoflavone involves the toll-like receptor (TLR) and mitogen-activated protein kinase (MAPK) pathways. LPS-induced upregulation of p38 MAPK phosphorylation was significantly reduced by 10 ${\mu}M$ amentoflavone. These results suggest that amentoflavone exhibits effective anti-inflammatory activities through regulation of TLR4 and phosphorylation of p38 MAPKs.

Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome

  • Han, Byung-Cheol;Ahn, Huijeong;Lee, Jiseon;Jeon, Eunsaem;Seo, Sanghoon;Jang, Kyoung Hwa;Lee, Seung-Ho;Kim, Cheon Ho;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.513-523
    • /
    • 2017
  • Background: Korean Red Ginseng extracts (RGE) have been suggested as effective immune modulators, and we reported that ginsenosides possess anti-inflammasome properties. However, the properties of nonsaponin components of RGE have not been well studied. Methods: To assess the roles of nonsaponin fractions (NS) in NLRP3 inflammasome activation, we treated murine macrophages with or without first or second inflammasome activation signals with RGE, NS, or saponin fractions (SF). The first signal was nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$)-mediated transcription of pro-interleukin (IL)-$1{\beta}$ and NLRP3 while the second signal triggered assembly of inflammasome components, leading to IL-$1{\beta}$ maturation. In addition, we examined the role of NS in IL-6 production and IL-$1{\beta}$ maturation in mice. Results: NS induced IL-$1{\beta}$ and NLRP3 transcription via toll-like receptor 4 signaling, whereas SF blocked expression. During the second signal, SF attenuated NLRP3 inflammasome activation while NS did not. Further, NS-injected mice presented increased IL-$1{\beta}$ maturation and IL-6 production. Conclusion: SF and NS of RGE play differential roles in the NLRP3 inflammasome activation. Hence, RGE can be suggested as an NLRP3 inflammasome modulator.

Effect of sweet potato purple acid phosphatase on Pseudomonas aeruginosa flagellin-mediated inflammatory response in A549 cells

  • Heyeon, Baik;Jaiesoon, Cho
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.315-321
    • /
    • 2023
  • Objective: The study was conducted to investigate the dephosphorylation of Pseudomonas aeruginosa flagellin (PA FLA) by sweet potato purple acid phosphatase (PAP) and the effect of the enzyme on the flagellin-mediated inflammatory response in the A549 lung epithelial cell line. Methods: The activity of sweet potato PAP on PA FLA was assayed at different pH (4, 5.5, 7, and 7.5) and temperature (25℃, 37℃, and 55℃) conditions. The release of interleukin-8 (IL-8) and the activation of nuclear factor kappa- light-chain-enhancer of activated B cells (NF-κB) in A549 cells exposed to PA FLA treated with or without sweet potato PAP was measured using IL-8 and NF-κB ELISA kits, respectively. The activation of toll-like receptor 5 (TLR5) in TLR5-overexpressing HEK-293 cells exposed to PA FLA treated with or without sweet potato PAP was determined by the secreted alkaline phosphatase-based assay. Results: The dephosphorylation of PA FLA by sweet potato PAP was favorable at pH 4 and 5.5 and highest at 55℃. PA-FLA treated with the enzyme decreased IL-8 release from A549 cells to about 3.5-fold compared to intact PA FLA at 1,000 ng/mL of substrate. Moreover, PA-FLA dephosphorylated by the enzyme repressed the activation of NF-κB in the cells compared to intact PA FLA. The activation of TLR5 by PA-FLA was highest in TLR-overexpressing HEK293 cells at a substrate concentration of 5,000 ng/mL, whereas PA FLA treated with the enzyme strongly repressed the activation of TLR5. Conclusion: Sweet potato PAP has the potential to be a new alternative agent against the increased antibiotic resistance of P. aeruginosa and may be a new conceptual feed additive to control unwanted inflammatory responses caused by bacterial infections in animal husbandry.