• Title/Summary/Keyword: Tokyo Bay

Search Result 49, Processing Time 0.028 seconds

A Study on the Upwelling Phenomena of Anoxic Bottom Water (Blue Tide Phenomena) in the Coastal Areas (연안역에서의 저층 빈 산소수의 용승현상(청조현상)에 관한 연구)

  • 윤종성
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.291-300
    • /
    • 1998
  • Recently, upwelling of anoxic bottom water mass have been frequently observed in northeast part of Tokyo Bay in Japan during summer to autumn. Since the colour of water surface becomes milkyblue or milkygeen, the upwelling phenomenon Is called 'Blue Tide'. The data analysis of field surveys during 'Blue Tide' appearance have been performed for understanding the physical features of the 'Blue Tide' phenomena In Tokyo Bay. It becomes clear that (1) the formation of the anoxic bottom water correlates well with the temperature difference between the surface and bottom waters, (21 there are two necessary conditions for generating 'Blue Tide': that Is, strong stratincation and off-shore wind. The strong southwest(on-shored wand before the 'Blue Tide' appearance may play an iniportant role to make the striancation strengthen. When these conditions are larger and the northeast or east-northeast (off-shored wind stronger than S ifs blows In succession, the 'Blue Tide' upwelling appears at the head of Tokyo Bay.

  • PDF

Numerical Simulation of Fluorescent Whitening Agents (DAS1) in Tokyo Bay (동경만 형광표백제 성분물질(DAS1)의 거동 특성 시뮬레이션)

  • Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.519-525
    • /
    • 2011
  • A three-dimensional ecological model(EMT-3D) was applied to DAS1 in Tokyo Bay. The simulated results of DAS1 were in good agreement with the observed values. The result of sensitivity analysis showed that photolysis coefficient and extinction coefficient were important factor for dissolved DAS1, and photolysis coefficient, extinction and POC partition coefficient for PAHs in particulate organic matter. Mass balance of DAS1 in Tokyo Bay was calculated by using the simulated results of EMT-3D.

Analysis of Vessel Traffic in Tokyo Bay Observed by New Remote Radar Network System

  • Okano, Tadashi;Ohtsu, Kohei;Hagiwara, Hideki;Shoji, Ruri;Tamaru, Hitoi;Liu, Shun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.208-216
    • /
    • 2004
  • Since 2000, the authors have been developing remote radar network system to observe the vessel traffic in Tokyo Bay. In December 2002, the first operational remote radar station was set at the National Defense Academy in Yokosuka, and vessel traffic observation was started. However, it was impossible to perform accurate observation in the northern part of Tokyo Bay by this Yokosuka radar station only. In September 2003, the second remote radar station and AIS receiving station were installed at Higashi Ogishima in Kawasaki. This second radar enabled us to carry out accurate observation in that area. Both radars can be remotely controlled from the monitoring station in Tokyo University of Marine Science and Technology. On September 30 and October 1,2003, the vessel traffic observation was carried out using both radars. Combining radar images observed by both radars, the ships' tracks were taken and the dangerous ships were extracted by using SJ value and Bumper Model. The time changes of dangerous ship density in some areas in Tokyo Bay and utilization ratio of the traffic routes were also investigated. In addition, analyzing the AIS date received at Kawasaki station, the positions and speed vectors of the ships equipped with AIS were shown.

  • PDF

Development of Remote Radar/AIS Network System for Observing and Analyzing Vessel Traffic in Tokyo Bay

  • Hagiwara, Hideki;Shoji, Ruri;Tamaru, Hitoi;Liu, Shun;Okano, Tadashi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.151-156
    • /
    • 2006
  • Accurate vessel traffic observation is indispensable to carry out vessel traffic management, design of vessel traffic route, planning of port construction, etc. In order to observe the vessel traffic accurately without many efforts such as the use of a ship or car equipped with special radar observation system and the preparation of observation staff, the authors have been developing completely automated remote radar/AIS network system covering the main traffic area in Tokyo Bay. The composite radar image observed at Yokosuka and Kawasaki radar stations with AIS information can be seen on web site of Internet. In addition to the development of radar/AIS observation system, the software to analyze observed vessel traffic flow has been developed. This software has various functions such as automatic tracking of ship's positions, automatic estimation of ship's size, automatic integration of radar image and AIS data, animation of ships' movements, extraction of dangerous ship encounters, etc. The configuration and functions of the developed remote radar/AIS network system are shown first in this paper. Then various functions of the software to analyze vessel traffic are introduced, and some analyzed results on the vessel traffic in Tokyo Bay are described demonstrating the effectiveness of the developed system.

  • PDF

Bio-Optical Modeling of Laguna de Bay Waters and Applications to Lake Monitoring Using ASTER Data

  • Paringit, EC.;Nadaoka, K.;Rubio, MCD;Tamura, H.;Blanco, Ariel C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.667-669
    • /
    • 2003
  • A bio-optical model was developed specific for turbid and shallow waters. Special studies were carried out to estimate absorption and scattering properties as well as backscattering probability of suspended matter. The inversion of bio-optical model allows for direct retrieval of turbidity and chlorophyll- a from the visible-near infrared (VNIR) range sensor. Time-series satellite imagery from ASTER AM-1 sensor, were used to monitor the Laguna de Bay water quality condition. Spatial distribution of temperature for the lake was extracted from the thermal infrared (TIR) sensor. Corresponding field surveys were conducted to parameterize the bio -optical model. In-situ measurements include suspended particle and chlorophyll-a concentrations profiles from nephelometric devices and processing of water samples. Hyperspectral measurements were used to validate results of the bio -optical model and satellite- based estimation. This study provides a theoretical basis and a practical illustration of applying space- based measurements on an operational basis.

  • PDF

MONITORING THE BAY OF BENGAL AS A BALLAST WATER EXCHANGEABLE SEA USING MODIS/AQUA

  • Kozai, Katsutoshi;Ishida, Hiroshi;Okamoto, Ken;Fukuyo, Yasuyo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.483-486
    • /
    • 2006
  • The study describes the monitoring of the Bay of Bengal as a ballast water exchangeable sea using MODIS/Aqua-derived diffuse attenuation coefficient (K(490)) synchronized with in situ ballast water sampling and analysis along the LNG carrier's route between Japan and Qatar from 2002 to 2005. Based on the relationship between K(490) and corresponding in situ plankton cell densities, the Bay of Bengal is recognized as a ballast water exchangeable sea to meet the regulation of ballast water performance standard of International Maritime Organization (IMO). Furthermore the Bay of Bengal with more than 200m depth and more than 200 nautical mile distance from shore is extracted based on the regulation of ballast water exchange area of IMO. However, an anomalously high K(490) area is found off the coast of Sri Lanka during the northeast monsoon in 2005, which corresponds higher cell densities than the criterion set by the regulation of IMO. The phenomenon of high cell density in the Bay of Bengal seems to be related with the phytoplankton bloom during the northeast monsoon. Seasonal and annual variability of phytoplankton bloom will be investigated to establish an early routing system for avoiding the high cell density area in advance.

  • PDF

Comparison Study between Results of Ecosystem Model and Satellite Data in the Tokyo Bay (동경만의 생태계모델 결과와 위성자료의 비교연구)

  • Lee, Sung-Ae;Sugimori, Yasuhiro;Kim, Young-Seup
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2004
  • The hydro-dynamical and ecological coupled model were applied in the Tokyo Bay, to evaluate the flow pattern including water quality parameters and the distribution of biomass flux, and to compare with the results obtained from the satellite data during March 2001. The flow pattern and salinity distribution obtained from the present model were nearly identical with those of the previous studies. SST from NOAA/AVHRR was $2.5^{\circ}C$ higher than model results in the mouth of bay and $0.5^{\circ}C$ lower than model results in the inner bay, respectively. It was found that the concentration of chlorophyll-a estimated from SeaWiFS was considerably higher than that of model result, regardless similar distribution pattern. This disagreement will be studied through the more elaborate investigation in the future.

  • PDF

Hydraulic Model Experiment on the Circulation in Sagami Bay, Japan (III) -The Time-Varying States of the Flow Pattern and Water Exchange in Barotropic Rotating Model-

  • Choo Hyo-Sang;Sugimoto Takasige
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.260-268
    • /
    • 1998
  • A flow pattern and water exchange in Sagami Bay is examined using a barotropic hydraulic model. In the model experiments, the volume transports of the Kuroshio Through Flow were changed with time. The results of the model experiments show that when the volume transport is increased with time, water mass and vorticity are transferred to the inner part of the bay by wakes from the western part of the bay. In the case of decrease, as the wakes are ceased, the inner cyclonic circulation water is discharged to the outside of the bay by its southward extension through the Oshima eastern channel. It is found that the water exchange by the short-term variation of volume transport in time is about 20% of all the bay water.

  • PDF