• Title/Summary/Keyword: Toe bearing capacity

Search Result 24, Processing Time 0.02 seconds

Applicability of CPT-based Toe Bearing Capacity of Driven PHC Piles (PHC 항타말뚝에 대한 CPT 선단지지력 공식의 적용성 분석)

  • Le, Chi-Hung;Kim, Sung-Ryul;Chung, Sung-Gyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.792-798
    • /
    • 2008
  • CPT 시험은 지난 30여년 동안 지반조사 분야에서 널리 이용되어 왔다. CPT 콘의 근입은 항타말뚝의 근입방법과 유사하기 때문에, CPT 콘의 선단저항력을 이용하여 말뚝의 지지력을 산정하려는 연구가 많이 수행되어 왔다. 본 연구의 목적은 기존에 제안된 CPT 선단지지력 공식의 적용성을 분석하는 것이다. 이를 위해 낙동강 하구 대심도 연약지반에서 수행된 항타 PHC 말뚝에 대한 총 172개의 PDA 시험자료와 80개소의 CPT 자료를 수집하였다. PDA시험의 CAPWAP분석에서 얻어진 선단지지력과 각 CPT 지지력 공식에서 산정된 선단지지력을 비교함으로써 각 공식의 적용성을 분석하였다. 분석에 이용된 CPT 지지력 공식은 Aoki 방법, Meyerhof 방법, Penpile 방법, Philpponnat 방법, LCPC 방법, Schmertmann 방법, Zhou 방법, ICP 방법, Eslami & Fellenius 방법, 그리고 UWA-05 방법의 총 10가지이다. 분석결과, Aoki 방법, Phillipponnat 방법, ICP 방법 그리고 LCPC 방법 순으로 그 적용성이 높은 것으로 나타났다.

  • PDF

Evaluation of the q-w Curve on Rock-Socketed Drilled Shafts by Triaxial Compression Tests (삼축압축시험을 통한 암반에 근입된 현장타설말뚝의 선단 하중전이곡선 산정)

  • Kim, Tae-Hyung;Kim, Yong-Min;Jeong, Sang-Seom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.455-465
    • /
    • 2008
  • In this study, the load distribution and deformation of rock-socketed drilled shafts subjected to axial load are investigated based on small scale model tests. In order to analyze the effects of major influencing factors of end bearing capacity, Hoek-cell triaxial tests were performed. From the test results, it was found that the initial slope of end bearing load transfer (q-w) curve was highly dependent on rock mass modulus and pile diameter, while the ultimate unit toe resistance ($q_{max}$) was influenced by rock mass modulus and the spacing of discontinuities. End bearing load transfer function of drilled shafts socketed in rock was proposed based on the Hoek-cell triaxial test results and the field loading tests which were performed on granite and gneiss in South Korea. Through the comparison with pile load tests, it is found that the load-transfer curve by the present study is in good agreement with the general trend observed by field loading tests, and thus represents a significant improvement in the prediction of load transfer of drilled shaft.

  • PDF

A Study on the Measurement of End Bearing Capacity for Large Diameter Drilled Shaft Constructed in Fault Zone Using the Static Bi-directional End Leading Test (양방향 선단재하시험을 이용한 단층파쇄대에 시공된 대구경 현장타설말뚝의 선단지지력 측정 연구)

  • 정창규;정성민;황근배;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.135-143
    • /
    • 2004
  • In the land section of marine bridge construction site, to confirm the end bearing of large diameter drilled shaft constructed in the fault zone which was discovered unexpectedly, the hi-directional end loading tests were performed. The objectives of this study are to confirm the end bearing of the pile constructed in fault zone and the increasing effect of end bearing after grouting the base ground beneath the pile toe. After grouting the pile base ground, the settlement of pile base decreased considerably and the pile base resistance increased more than twice.

An Analysis on the Vertical Load Bearing Behavior according to Construction Methods of a Environment-friendly Screw Concrete Pile for the Noise and Vibration-free Method (무소음.무진동 공법을 위한 환경친화적인 스크류콘크리트말뚝의 시공방법에 따른 연직하중지지거동 분석)

  • Kim, Dongchul;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.5-11
    • /
    • 2013
  • Because the regulation for a noise and a vibration in our country has been being reinforced more and more, a more environment-friendly pile construction method than a current low-noise and low-vibration method was needed for the close construction in the downtown area. In this study, the characteristics of a screw concrete pile method for noise and vibration-free method was explained, and it's vertical bearing capacity was studied in the base of the static pile load test data of the screw concrete piles. Constructed by two methody; a pre-digging shoe type construction method and a toe-jetting shoe type construction method. The vertical load bearing capacity of a screw pile constructed by the former was more about 70% than that of a screw pile constructed by the latter.

Comparative Study between Design Methods and Pile Load Tests for Bearing Capacity of Driven PHC Piles in the Nakdong River Delta (낙동강 삼각주에 항타된 PHC말뚝의 지지력을 위한 재하시험과 지지력 공식의 비교연구)

  • Dung, N.T.;Chung, S.G.;Kim, S.R.;Chung, J.G.
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.61-75
    • /
    • 2007
  • Deep foundations have been popularly installed in hard stratum such as gravels or rocks in Korea. However, it is necessary to consider sand or sandy gravel layers that locate at the mid-depths as the bearing stratum of piles in the thick Nakdong River deltaic deposits, as done in the Chaophraya (Bangkok) and Mississippi River deltas. This study was focused on the finding of suitable methods for estimating bearing capacity when driving prestressed high-strength concrete (PHC) piles to a required depth in the deltaic area. Ground investigation was performed at five locations of two sites in the deltaic area. Bearing capacity of the driven piles has been computed using a number of proposed methods such as CPT-based and other analytical methods, based on the ground investigation and comparison one another other. Five PDA (pile driving analyzer) tests were systematically carried out at the whole depths of embedded piles, which is a well-blown useful technique for the purposes. As the results, the bearing capacities calculated by various methods were compared with the PDA and static load testing results. It was found that the shaft resistance is significantly governed by set-up effects and then the long-term value agrees well with that of the $\beta$ method. Also, the design methods for toe resistance were determined based on the SLT result, rather than PDA results that led to underestimation. Moreover, using the CPT results, appropriate methods were proposed for calculating the bearing capacity of the piles in the area.

Proposing new models to predict pile set-up in cohesive soils

  • Sara Banaei Moghadam;Mohammadreza Khanmohammadi
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • This paper represents a comparative study in which Gene Expression Programming (GEP), Group Method of Data Handling (GMDH), and multiple linear regressions (MLR) were utilized to derive new equations for the prediction of time-dependent bearing capacity of pile foundations driven in cohesive soil, technically called pile set-up. This term means that many piles which are installed in cohesive soil experience a noticeable increase in bearing capacity after a specific time. Results of researches indicate that side resistance encounters more increase than toe resistance. The main reason leading to pile setup in saturated soil has been found to be the dissipation of excess pore water pressure generated in the process of pile installation, while in unsaturated conditions aging is the major justification. In this study, a comprehensive dataset containing information about 169 test piles was obtained from literature reviews used to develop the models. to prepare the data for further developments using intelligent algorithms, Data mining techniques were performed as a fundamental stage of the study. To verify the models, the data were randomly divided into training and testing datasets. The most striking difference between this study and the previous researches is that the dataset used in this study includes different piles driven in soil with varied geotechnical characterization; therefore, the proposed equations are more generalizable. According to the evaluation criteria, GEP was found to be the most effective method to predict set-up among the other approaches developed earlier for the pertinent research.

Degradation in Intimate Bearing Capacity of Open -ended Pile During Simulated Horizontal Earthquake Shaking (유사화된 지진 진동에 의한 개단 말뚝의 지지력 저감)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.75-86
    • /
    • 1995
  • After open -ended model pipe pile, which was composed of inner tube and outer tube was driven by different installation methods, degradation in open -ended pipe pile capacity was studied during simulated horizontal seismic shaking, which was modeled by records of actual earthquake. Drgradation in ultimate capacity of open -ended pipe pile during simulated earthquake was about 20% in impact pile and was approached up to about 40% in vibratal pile. Most of degradation in ultimate pile capacity was occured in the outer shaft surface and degradations in outer skin friction, toe resistance of steel, and plugging force were about 80%, 10%, 10%, respectively. out of ultimate pile capacity. It appeared that this trend did not depend upon the different installation methods of pile.

  • PDF

The Effect of Induced Weight Bearing Method Using a Cane on Weight Bearing Distribution in Children with Spastic Hemiplegic Cerebral Palsy

  • Se-Hee Park;Ji-Young Choi;Sung-Min Son
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.2
    • /
    • pp.48-52
    • /
    • 2023
  • Purpose: This study was undertaken to determine whether the position of cane use affects the distribution of weight-bearing on both feet of children with hemiplegic cerebral palsy in a standing posture. Methods: Twenty participants with cerebral palsy were recruited as volunteers for this study. Using the Zebris FDM-System, weight-bearing distribution according to the method of using a cane was measured under three conditions in randomized order: (1) standing unaided (no cane); (2) standing with the affected side using the cane; and (3) standing with the non-affected side using the cane. The cane was matched by measuring length-from-floor to the greater trochanter of the subject, and was placed 15 cm outward from the little toe on the supporting side. Results: Evaluating the method of using a cane under the three conditions, we determined that pressure of the foot on the affected side was higher in the order: standing with affected side using cane > standing unaided (no cane) > standing with non-affected side using cane (p<0.05). In the post-hoc analysis, a significant difference was observed between (i) standing unaided (no cane) and standing with the affected side using cane, and (ii) standing with affected side using cane and standing with non-affected side using cane (p<0.05). Conclusion: This study suggests that induced weight-bearing methods using a cane on the affected side could increase the weight-bearing capacity on the affected side in children with spastic hemiplegic cerebral palsy, which will have a positive effect on reducing asymmetry weight support.

Applicability of PDA and SPT-based methods for Toe Bearing Capacity of PHC Piles Driven in the Thick Deltaic Deposits (대심도 연약지반에 항타매입된 PHC 말뚝의 선단지지력을 위한 CPT와 SPT법의 적용성 분석)

  • Dung, N.T.;Chung, Sung-Gyo;Kim, Sung-Ryul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.713-720
    • /
    • 2008
  • 본 연구는 낙동강 하구 대심도 연약지반에 항타관입된 PHC 말뚝에 대하여 SPT 지지력 공식으로 부터 계산된 선단지지력 값과 PDA 시험에서 얻어진 선단지지력 측정값을 비교하였다. 또한, SPT N값이 50이 넘는 경우에 대하여는 N값과 롯드 관입깊이의 선형관계를 가정하여 30cm 관입깊이에 해당하는 N값을 적용한 경우와 CPT $q_c$와의 상관성을 이용하여 $q_c$값으로부터 N값을 산정한 경우의 2가지 분석을 수행하였다. 그 결과, 본 연구에서 적용한 SPT 지지력 공식 모두 측정된 선단지지력 값과 차이가 났으며, SPT 지지력 공식은 대심도 연약지반에 항타 근입된 말뚝에 대하여 실제적인 설계를 수행할 때 신뢰하기 어려운 것으로 나타났다. 또한, N>50인 경우에 대하여 N값과 롯드 관입깊이의 선형관계를 적용하는 것은 지지력을 매우 과대평가하는 것으로 나타났다.

  • PDF

Numerical Analysis on Bearing Capacity of a Suction Bucket in Clay (수치해석을 이용한 점성토 지반에 설치된 버켓기초의 지지력 분석)

  • Le, Chi-Hung;Jeong, Jae-Uk;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.25-33
    • /
    • 2011
  • Suction buckets have been widely used for offshore structures such as anchors for floating facilities, and the foundations of offshore wind energy turbines. However, the design guidelines for suction buckets have not been clearly suggested. Therefore, this study performed the numerical analysis by using ABAQUS (2010) to evaluate bearing capacities and load-movement behaviors of the suction bucket in NC clay. For the numerical analysis, the depth ratio L/D (L=embedded length of skirt; D=diameter of a bucket) was varied from 0.25 to 1.0. The analysis results showed that the L/D ratio has a significant effect on the bearing capacity, and the vertical and horizontal capacities respectively increased by about 40% and 90%, when L/D ratio increased from 0.25 to 1.0. At the vertical loading, the bucket showed the similar failure mode with a deep foundation, so the shaft and toe resistances can be separately evaluated. At the horizontal loading, the bucket with L/D=O.25 showed the sliding failure mode and the bucket with $L/D{\geq}0.5$ showed the rotational failure mode.