• Title/Summary/Keyword: ToBI

Search Result 5,918, Processing Time 0.038 seconds

A study on the characteristics of Pb free Sn-2%Ag-x%Bi solder alloys (Pb Free Sn-2%Ag-x%Bi계 Solder의 특성에 관한 연구)

  • 흥순국;박일경;강정윤
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.148-156
    • /
    • 1998
  • The purpose of this study is to investigate the characteristics of Pb-Free Sn-2%Ag-Bi solder alloys. The solder alloys used in this study is Sn-2%Ag-(3,5,7,9%) Bi It is examined that their properties such as melting range, wettability, microstructure, microhardness, and tensile property. The addition of Bi(3,5,7,9%) lowered the melting point of the solder and the melting range was 196~203$^{\circ}C$. The wettability of the solder as equal to that of Sn-37% Pb solder. The morphology of structure did not change largely by addition of Bi. But the structure of cellular dendrite of linear type displayed. The tensile strength of the solder was superior to that of Sn-37%Pb solder. But the elongation was inferior to that of Sn-37%Pb solder. The hardness of Sn-2%Ag solder was tow times and that of Sn-2%Ag-Bi solder was three times of that in Sn-37%Pb solder. But the effect of increment of Bi content did not change largely.

  • PDF

Thermoelectric properties of hot pressed polycrystalline $Bi_2Te_3-Bi_2Se_3$ (가압소결된 다결정 $Bi_2Te_3-Bi_2Se_3$ 열전재료의 열전특성)

  • Hwang, C.W.;Hong, I.G.;Paik, D.K.;Choi, S.C.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.363-369
    • /
    • 1994
  • Bimuth telluride base thermoelectrics are prepared by AC current applied hot pressing method. It is possible to minimize the defects arising from the vaporization of Te, thanks to the very short processing time compared to the single crystal growing method. The optimum conditions for the AC applied hot pressing of 95 mol% $Bi_2Te_3-5 mol% Bi_2Se_3$ thermoelectrics are sintering at $400^{\circ}C$, for 2 minutes, under 1500 kgf/$\textrm{cm}^2$, with the particle size of $125 to 250 {\mu}m$, range of powder. The resultant Z value (figure of merit) was $2.2{\times}10^{-3}/K$.

  • PDF

Effects of Al2O3 Coating on BiVO4 and Mo-doped BiVO4 Film for Solar Water Oxidation

  • Arunachalam, Maheswari;Yun, Gun;Lee, Hyo Seok;Ahn, Kwang-Soon;Heo, Jaeyeong;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.424-432
    • /
    • 2019
  • Planar BiVO4 and 3 wt% Mo-doped BiVO4 (abbreviated as Mo:BiVO4) film were prepared by the facile spin-coating method on fluorine doped SnO2(FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO4 film. After annealing at a high temperature of 450℃ for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al2O3 layer, the ultra-thin Al2O3 layer with a thickness of approximately 2 nm was deposited on BiVO4 film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO4 and Mo:BiVO4 films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al2O3 layer, the Al2O3 coated BiVO4 (Al2O3/BiVO4) film exhibited enhanced photoelectrochemical performance in 0.5 M Na2SO4 solution (pH 6.5), having higher photocurrent density (0.91 mA/㎠ at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as VRHE) than BiVO4 film (0.12 mA/㎠ at 1.23 VRHE). Moreover, Al2O3 coating on the Mo:BiVO4 film exhibited more enhanced photocurrent density (1.5 mA/㎠ at 1.23 VRHE) than the Mo:BiVO4 film (0.86 mA/㎠ at 1.23 VRHE). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO4 film and Al2O3/Mo:BiVO4 film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (VFB) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al2O3 coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al2O3 layer.

Magnetoresistance of Bi Nanowires Grown by On-Film Formation of Nanowires for In-situ Self-assembled Interconnection

  • Ham, Jin-Hee;Kang, Joo-Hoon;Noh, Jin-Seo;Lee, Woo-Young
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.79-79
    • /
    • 2010
  • Semimetallic bismuth (Bi) has been extensively investigated over the last decade since it exhibits very intriguing transport properties due to their highly anisotropic Fermi surface, low carrier concentration, long carrier mean free path l, and small effective carrier mass $m^*$. In particular, the great interest in Bi nanowires lies in the development of nanowire fabrication methods and the opportunity for exploring novel low-dimensional phenomena as well as practical application such as thermoelectricity[1]. In this work, we introduce a self-assembled interconnection of nanostructures produced by an on-film formation of nanowires (OFF-ON) method in order to form a highly ohmic Bi nanobridge. A Bi thin film was first deposited on a thermally oxidized Si (100) substrate at a rate of $40\;{\AA}/s$ by radio frequency (RF) sputtering at 300 K. The sputter system was kept in an ultra high vacuum (UHV) of $10^{-6}$ Torr before deposition, and sputtering was performed under an Ar gas pressure of 2m Torr for 180s. For the lateral growth of Bi nanowires, we sputtered a thin Cr (or $SiO_2$) layer on top of the Bi film. The Bi thin films were subsequently put into a custom-made vacuum furnace for thermal annealing to grow Bi nanowires by the OFF-ON method. After thermal annealing, the Bi nanowires cannot be pushed out from the topside of the Bi films due to the Cr (or $SiO_2$) layer. Instead, Bi nanowires grow laterally as a mean s of releasing the compressive stress. We fabricated a self-assembled Bi nanobridge (d=192 nm) device in-situ using OFF-ON through annealing at $250^{\circ}C$ for 10hours. From I-V measurements taken on the Bi nanobridge device, contacts to the nanobridge were found highly ohmic. The quality of the Bi nanobridge was also proved by the high MR of 123% obtained from transverse MR measurements. These results manifest the possibility of self-assembled nanowire interconnection between various nanostructures for a variety of applications and provide a simple device fabrication method to investigate transport properties on nanowires without complex patterning and etching processes.

  • PDF

Effects of Mn Doping on Structural and Magnetic Properties of Multiferroic BiFeO3 Nanograins Made by Sol-gel Method

  • Raghavender, A.T.;Hong, Nguyen Hoa
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.19-22
    • /
    • 2011
  • [ $BiFeO_3$ ]is a multiferroic material that attracts attentions of many research groups due to its potential as being ferroelectric and ferromagnetic above room temperature. We have prepared both undoped- and Mn-doped $BiFeO_3$ by sol-gel auto-ignition method. Doping of Mn has resulted in decreasing grain size from 60 to 32 nm. X-ray diffraction data show that the samples are pure and single-phase. Infrared measurements on $BiFeO_3$ and Mn-doped $BiFeO_3$ revealed intrinsic stretching vibrations of tetrahedral sites of $Fe^{3+}$-O and of octahedral $Bi^{3+}$-O as well. On the other hand, as the Mn concentration increases, the magnetic moment of $BiFeO_3$ increases. It gives some suggestions in manipulating structural and magnetic properties of $BiFeO_3$ by doping Mn.

Mechanical Characteristics of Bi-2223 Wire for High-Tc Superconducting Cable (고온 초전도 케이블용 Bi-2223 선재의 기계적 특성)

  • 백승명;김영석;정순용;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1028-1034
    • /
    • 1998
  • Bi-2223 superconductor is known as one of the candidates for practical superconducting wires. Ag-sheathed Bi-2223 superconducting wires were fabricated using the powder-in-tube(PIT) method. When the 19-filaments wire was immersed in liquid nitrogen(77K), maximum critical current density Jc of 62 A/$mm_2$ at 0T was achieved. The critical current density has been shown to depend on the mechanical properties such as tensile stress and bending strain in Ag-sheathed Bi-2223 superconducting wires. The tensile strain for Jc degradation onset was in the range of 0.12~0.3%. In the case of 19-filaments wire, the bending strain is estimated to be smaller than 0.3% for the reasonable Jc value. The observed degradation of the critical current density due to strain effect is inevitable and can be attributed to the formation of microcracks within the superconducting core.

  • PDF

Luminescence Behavior of $YNbO_4$ and $YNbO_4:Bi$

  • Chang, Hyun-Ju;Lee, Seung-Kwon;Han, Cheong-Hwa;Park, Hee-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.35-36
    • /
    • 2000
  • The luminescence behaviors of Yttrium niobate and Bi doped Yttrium niobate were investigated under UV and low voltage electron excitations and interpreted with the first-principle calculations. In the UV excitation and emission spectra of $YNbO_4$ and $YNbO_4:Bi$, we were able to separate host contribution and Bi contribution and found that the shift in emission peak to longer wavelength is mainly due to Bi contribution. Using density functional theory, the cluster calculations were carried out for both $YNbO_4$ and $YNbO_4:Bi$. From the calculated density of states, we were also able to explain the charge transfer gap in the host and the effect of Bi in the excitation and emission spectra theoretically.

  • PDF

A Study of Bi-Jeung in the Mid-Chosun Dynasty: Based on the Seungjeongwon Ilgi (조선 중기의 비증(痺症)에 대한 연구: 승정원일기(承政院日記)를 중심으로)

  • Cho, Woo-Young;Jung, Jae-Young;Chung, Seok-Hee
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.25 no.2
    • /
    • pp.111-118
    • /
    • 2015
  • Objectives Through the clinical records of Seungjeongwon Ilgi, we reviewed the usage of Bi-Jeung to know the concept of the word and studied therapeutic strategies for managing Bi-Jeung. Methods We investigated the clinical records of the mid-Chosun dynasty containing the key word "Bi" from electronic database (Seungjeongwon Ilgi). Results Of 4,039 records, 249 articles thought to have medicinal value were lastly selected. We subdivided the cases into 13 categories according to time, the connection of contents and the change of associated symptoms. "Bi" was not used alone but used in combination with body parts or other symptoms. Etiological causes of "Bi" involved dampness, phlegm, fire, heat and qi disorders. We suggested that "Bi" of the mid-Chosun dynasty meant a symptom group mainly of sensory impairment and additionally pain or motor disturbance. Among the 22 herbal medicine formulas used, 15 were based on internal medical pattern identifications and 7 were symptomatic treatments. Acupuncture and moxibustion therapy were primarily applied to adjacent acupoints. In addition, External therapies were used together, such as washing therapy, plaster therapy, cupping therapy and thermotherapy. Conclusions "Bi" principally indicated sensory impairment on limbs and the main etiological cause was considered to be dampness. Herbal medicine, acupuncture, moxibustion and external therapies were used to cure Bi-Jeung.

NO2 Sensing Properties of β-Bi2O3 Nanowires Sensor Coated with Pd Nanoparticles (Pd 나노입자가 코팅된 β-Bi2O3 나노와이어의 NO2 검출 특성)

  • Park, Sunghoon;Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.303-308
    • /
    • 2015
  • Pd-functionalized ${\beta}-Bi_2O_3$ nanowires are synthesized by thermal evaporation of Bi powder using VLS mechanism followed by Pd coating and annealing. In this study, sensing properties of Pd-functionalized ${\beta}-Bi_2O_3$ nanowires sensor to selected concentrations of $NO_2$ gas were examined. Scanning electron microscopy showed that the nanowires with diameters in a range of 100 - 200 nm and lengths of up to a few tens of micrometers. Transmission electron microscopy and X-ray diffraction confirmed that the products corresponded to the nanowires of ${\beta}-Bi_2O_3$ crystals and Pd nanoparticles. Pd-functionalized ${\beta}-Bi_2O_3$ nanowires sensor showed an enhanced sensing performance to $NO_2$ gas compared to as-synthesized ${\beta}-Bi_2O_3$ nanowires sensor. As synthesized and Pd-functionalized ${\beta}-Bi_2O_3$ nanowire sensors showed responses of 178% - 338% and 196% - 535% at $300^{\circ}C$, respectively, to 0.05 - 2 ppm $NO_2$. In addition, the underlying mechanism of the enhancement of the sensing properties of ${\beta}-Bi_2O_3$ nanowires by Pd-functionalization is discussed.

Phase Transformation of Sn-Pb-Bi Solder for Photovoltaic Ribbon: A Real-time Synchrotron X-ray Scattering Study

  • Cho, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.155-158
    • /
    • 2014
  • The phase transformation of Sn-Pb-Bi solder for photovoltaic ribbon during soldering was studied using real-time synchrotron x-ray scattering. At room temperature, Sn and Pb crystal phases in the solder existed separately. By heating to $92^{\circ}C$, a new PbBi alloy crystal phase was formed, which grew further up to $160^{\circ}C$. The Sn crystal phase first started to melt at $160^{\circ}C$, and was mostly melted at $165^{\circ}C$. In contrast, the Pb and PbBi crystal phases started to melt at $165^{\circ}C$, and were mostly melted at $170^{\circ}C$. The useful result was obtained, that the solder's melting temperature decreased from $183^{\circ}C$ to $170^{\circ}C$ by addition of a small amount of Bi atoms to the eutectic Sn62-Pb38 (wt%) solder. Our study first revealed the detailed in-situ phase transformation of Sn-Pb-Bi solder during heating to the eutectic temperature. Considering the results of peel strength and hardness, adding 1 wt% of Bi atoms to the Sn62-Pb38 (wt%) solder produced an appropriate composition.