• Title/Summary/Keyword: ToA estimation

Search Result 22,805, Processing Time 0.055 seconds

Development of the Estimation Software for a Petrochemical Plant (화공플랜트 견적 소프트웨어 개발에 관한 연구)

  • Min, Bong-Ki;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.8 no.1
    • /
    • pp.50-59
    • /
    • 2012
  • The current dual-watchdog estimation system has individually calculated the construction, the engineering and the procurement cost. The dual-watchdog estimation system is inefficient and prolonged estimation period because of the lack of the interoperability and the difference of material unit cost and construction unit cost. In order to resolve this problem, new estimation software was developed. The estimation software is developed by making up for the weak points in existing estimation method. The cost data with the same standard is the key point. And this software enhanced accuracy and speed of the data search in stylized estimation standard. A summary of the construction, the engineering and the procurement cost was generated in this estimation software. The unit rate about the labor cost, equipment and expense through a sheet was handled. The developed estimation software has five categories on engineering cost, procurement cost, construction cost and subcontractor management sheet. In this study, the estimation software to supplement the faults of the existing estimation method was developed. And estimation software on petrochemical projects increases an efficiency of the estimation work.

  • PDF

AdaMM-DepthNet: Unsupervised Adaptive Depth Estimation Guided by Min and Max Depth Priors for Monocular Images

  • Bello, Juan Luis Gonzalez;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.252-255
    • /
    • 2020
  • Unsupervised deep learning methods have shown impressive results for the challenging monocular depth estimation task, a field of study that has gained attention in recent years. A common approach for this task is to train a deep convolutional neural network (DCNN) via an image synthesis sub-task, where additional views are utilized during training to minimize a photometric reconstruction error. Previous unsupervised depth estimation networks are trained within a fixed depth estimation range, irrespective of its possible range for a given image, leading to suboptimal estimates. To overcome this suboptimal limitation, we first propose an unsupervised adaptive depth estimation method guided by minimum and maximum (min-max) depth priors for a given input image. The incorporation of min-max depth priors can drastically reduce the depth estimation complexity and produce depth estimates with higher accuracy. Moreover, we propose a novel network architecture for adaptive depth estimation, called the AdaMM-DepthNet, which adopts the min-max depth estimation in its front side. Intensive experimental results demonstrate that the adaptive depth estimation can significantly boost up the accuracy with a fewer number of parameters over the conventional approaches with a fixed minimum and maximum depth range.

  • PDF

Comparison of Parameter Estimation Methods in A Kappa Distribution

  • Park Jeong-Soo;Hwang Young-A
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.285-294
    • /
    • 2005
  • This paper deals with the comparison of parameter estimation methods in a 3-parameter Kappa distribution which is sometimes used in flood frequency analysis. Method of moment estimation(MME), L-moment estimation(L-ME), and maximum likelihood estimation(MLE) are applied to estimate three parameters. The performance of these methods are compared by Monte-carlo simulations. Especially for computing MME and L-ME, three dimensional nonlinear equations are simplified to one dimensional equation which is calculated by the Newton-Raphson iteration under constraint. Based on the criterion of the mean squared error, L-ME (or MME) is recommended to use for small sample size( n$\le$100) while MLE is good for large sample size.

A Suggestion of Fuzzy Estimation Technique for Uncertainty Estimation of Linear Time Invariant System Based on Kalman Filter

  • Kim, Jong Hwa;Ha, Yun Su;Lim, Jae Kwon;Seo, Soo Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.919-926
    • /
    • 2012
  • In order to control a LTI(Linear Time Invariant) system subjected to system noise and measurement noise, first of all, it is necessary to estimate the state of system with reliability. Kalman filtering technique has been widely used to estimate the state of the stochastic LTI system with stationary noise characteristics because of its estimation ability versus algorithm simplicity. However, it often fails to estimate the state of the LTI system of which system parameter uncertainty exists partly and/or input uncertainty exists. In this paper, a new estimation technique based on Kalman filter is suggested for stochastic LTI system under parameter uncertainty and/or input uncertainty. A fuzzy estimation algorithm against uncertainties is introduced so as to compensate the state estimate filtered by Kalman filter. In order to verify the state estimation performance of the suggested technique, several simulations are accomplished.

Advanced surface spectral-reflectance estimation using a population with similar colors (유사색 모집단을 이용한 개선된 분광 반사율 추정)

  • 이철희;김태호;류명춘;오주환
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.280-287
    • /
    • 2001
  • The studies to estimate the surface spectral reflectance of an object have received widespread attention using the multi-spectral camera system. However, the multi-spectral camera system requires the additional color filter according to increment of the channel and system complexity is increased by multiple capture. Thus, this paper proposes an algorithm to reduce the estimation error of surface spectral reflectance with the conventional 3-band RGB camera. In the proposed method, adaptive principal components for each pixel are calculated by renewing the population of surface reflectances and the adaptive principal components can reduce estimation error of surface spectral reflectance of current pixel. To evacuate performance of the proposed estimation method, 3-band principal component analysis, 5-band wiener estimation method, and the proposed method are compared in the estimation experiment with the Macbeth ColorChecker. As a result, the proposed method showed a lower mean square ems between the estimated and the measured spectra compared to the conventional 3-band principal component analysis method and represented a similar or advanced estimation performance compared to the 5-band wiener method.

  • PDF

Estimation of structural vector autoregressive models

  • Lutkepohl, Helmut
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.421-441
    • /
    • 2017
  • In this survey, estimation methods for structural vector autoregressive models are presented in a systematic way. Both frequentist and Bayesian methods are considered. Depending on the model setup and type of restrictions, least squares estimation, instrumental variables estimation, method-of-moments estimation and generalized method-of-moments are considered. The methods are presented in a unified framework that enables a practitioner to find the most suitable estimation method for a given model setup and set of restrictions. It is emphasized that specifying the identifying restrictions such that they are linear restrictions on the structural parameters is helpful. Examples are provided to illustrate alternative model setups, types of restrictions and the most suitable corresponding estimation methods.

On-line System Identification using State Observer

  • Park, Duck-Gee;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2538-2541
    • /
    • 2005
  • This paper deals one of the methods of system identification, especially on-line system identification in time-domain. The algorithm in this study needs all states of the system as well input to it for system identification. In this reason, Kalman filter is used for state estimation. But in order to implement a state estimator, the fact that a system model must be known is logical contradiction. To overcome this, state estimation and system parameter estimation are performed simultaneously in one sample. And the result of the system parameter estimation is used as basis to state estimation in next sample. On-line system identification comes, in every sample by performing both processes of state estimation and parameter estimation that are related mutually and recursively. This paper demonstrates the validity of proposed algorithm through an example of an unstable inverted pendulum system. This algorithm can be useful for on-line system identification of a system that has fewer number of measurable output than system order or number of states.

  • PDF

Noise Estimation Using Edge Detection (에지 검출을 이용한 잡음 예측)

  • Kim, Young-Ro;Dong, Sung-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.281-286
    • /
    • 2013
  • In this paper, we propose a noise estimation method using edge detection. It is a filter-based noise estimation method. Edge detection is to exclude structures and details which have an effect on the noise estimation. To detect edge, we use a modified rational filter which is robust to details of images. The proposed noise estimation method is more efficiently applied to noise estimation in various types of images and has better results than those of conventional filter-based noise estimation methods.

Time Delay Estimation Using Automatic Tracking Window (자동추적윈도우를 이용한 시간지연 추정)

  • 윤병우;신윤기;박의열
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.5
    • /
    • pp.347-354
    • /
    • 1991
  • In this paper, the Automatic Tracking Window(ATW) algorithm is applied to the Generalized Cross-Correlation(GCC) time delay estimation algorithm as a preprocessing. The Linear Prediction(LP) algorithm, which is a pararmetric spectral estimation algorithm, is applied to the time delay estimation. And the ATW, a preprocessing algorithm is applied to this algorithm too. This paper shows that the ATW algorithm attenuates the sidelobes very much and improves the resolution of the timedelay estimation.

  • PDF

Variable Block Size Motion Estimation Techniques for The Motion Sequence Coding (움직임 영상 부호화를 위한 가변 블록 크기 움직임 추정 기법)

  • 김종원;이상욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.104-115
    • /
    • 1993
  • The motion compensated coding (MCC) technique, which exploits the temporal redundancies in the moving images with the motion estimation technique,is one of the most popular techniques currently used. Recently, a variable block size(VBS) motion estimation scheme has been utilized to improve the performance of the motion compensted coding. This scheme allows large blocks to the used when smaller blocks provide little gain, saving rates for areas containing more complex motion. Hence, a new VBS motion estimation scheme with a hierarchical structure is proposed in this paper, in order to combine the motion vector coding technique efficiently. Topmost level motion vector, which is obtained by the gain/cost motion estimation technique with selective motion prediction method, is always transmitted. Thus, the hierarchical VBS motion estimation scheme can efficiently exploit the redundancies among neighboring motion vectors, providing an efficient motion vector encoding scheme. Also, a restricted search with respect to the topmost level motion vector enables more flexible and efficient motion estimation for the remaining lower level blocks. Computer simulations on the high resolution image sequence show that, the VBS motion estimation scheme provides a performance improvement of 0.6~0.7 dB, in terms of PSNR, compared to the fixed block size motion estimation scheme.

  • PDF