• 제목/요약/키워드: Titanium surface coating

검색결과 208건 처리시간 0.023초

성견 치주질환 이환 발치와에 즉시 임플란트 매식술시 Titanium plasma sprayed 임프란트와 Hydroxyapatite coated 임프란트의 계면조직에 관한 연구 (HISTOLOGICAL COMPARISONS OF TITANIUM PLASMA SPRAYED IMPLANT AND HYDROXYAPATITE COATED IMPLANT TO BONE INTERFACE IN PERIODONTALLY INVOLVED EXTRACTION SOCKETS IN DOGS)

  • 김진숙;김종관
    • Journal of Periodontal and Implant Science
    • /
    • 제23권3호
    • /
    • pp.400-410
    • /
    • 1993
  • Dental implants have been widely used in the treatment of esthetic and functional problems of the mouth due to alveolar bone loss, after tooth extraction. The success of implantation strongly depends on osseointegration. For osseointegration, implant material, methodology, and design have been investigated. For materials, two popular materials at present are titanium and hydroxyapatite. For methods, immediate implantation is being used recently. The purpose of this study is to evaluate osseointegration between the unthreaded cylindrical TPS implant and the HA-coated implant by a histomorphometric analysis. For this analysis, experimental periodontits was induced on the 3, 4 premolars of adult dogs by the ligation of orthodontic threads. Thereafter, each tooth was extracted. TPS. Implants and HA-coated implants were immediately inserted in the extraction socket. In control group, TPS implants were immediately inserted, and In experimental group, HA implants were immediately inserted. The dogs were sacrificed after 12 weeks, then the specimens were prepared for LM and histomorphometric analysis. The conclusion of this study is as follows l. In both control and experimental group, no inflammatory cells were observed. 2. The results of the histomorphometric analysis showed that the total osseointegration was 48.5% in control group, and 68.8% in expermental group. The experimental group was higher than the control group, and the difference was not statistically significant (p<0.05). 3. The results of the histomorphometric analysis showed that the osseointegration in the hole was 40.6% in control group, and 70.2% in experimental group. The experimental group was higher than the control group, and the difference was statistically significant (p<0.05). In both control and experinental group, no inflammatory cells were observed. 4. The results of the histomorphometric analysis showed that the osseointegration in the lower part was 52.1% in control group, and 73.3% in experimental group. The experimental group was higher than the control group, and the difference was statistically significant (p<0.05). 5. In experimental group, the bone to HA interface seemed to be mixed of bone and HA. We could not distinguish HA from the bone. The HA coating was detached from the titanium surface.

  • PDF

티타늄 나프테네이트를 이용한 나노결정질 $TiO_2$ 광촉매 박막의 제조 (Preparation of nanocrystalline $TiO_2$ photocatalyst films by using a titanium naphthenate)

  • 이선옥;김상복;윤연흠;강보안;황규석;오정선;양순호;김병훈
    • 한국결정성장학회지
    • /
    • 제12권5호
    • /
    • pp.240-246
    • /
    • 2002
  • 티타늄 나프테네이트를 출발 원료로 사용하고 스핀코팅-열분해법을 이용하여 소다-라임-실리카 슬라이드 유리기판 위에 $TiO_2$ 박막을 제조하였다. 도포된 박막은 $500^{\circ}C$로 10분간 공기분위기에서 전열처리를 행하였고, 최종 열처리는 500, 550과 $600^{\circ}C$로 30분간 공기분위기에서 각각 행하였다. X-선 회절분석법을 이용하여 박막의 결정화도를 조사하였고, 전계 방출 주사형 전자 현미경과 원자간력 현미경을 이용하여 $TiO_2$ 박막의 표면미세구조와 표면 거칠기를 조사하였다. 550 과 $600^{\circ}C$로 최종 열처리한 박막의 X-선 회절분석 결과, 아나타제 상만이 존재하였다. 500과 $550^{\circ}C$로 열처리한 박막의 표면은 균질하였으나, 열처리온도가 $600^{\circ}C$로 증가함에 따라서, 박막의 표면에는 바늘모양의 상이 3차원적으로 성장하였다. 모든 박막에 있어서 가시영역에서의 투과율은 500nm에서 90% 이상의 높은 값을 나타냈다. 박막의 광촉매특성을 조사하기 위하여 stearic acid가 코팅된 박막에 365nm 파장의 UV를 2.4mW/$\textrm{cm}^2$의 강도로 조사하여 C-H모드에 대한 IR 흡수단의 변화를 관찰하였다.

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Surface Observation of Mg-HA Coated Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.198-198
    • /
    • 2016
  • An ideal orthopedic implant should provide an excellent bone-implant connection, less implant loosening and minimum adverse reactions. Commercial pure titanium (CP-Ti) and Ti alloys have been widely utilized for biomedical applications such as orthopedic and dental implants. However, being bioinert, the integration of such implant in bone was not in good condition to achieve improved osseointegraiton, there have been many efforts to modify the composition and topography of implant surface. These processes are generally classified as physical, chemical, and electrochemical methods. Plasma electrolytic oxidation (PEO) as an electrochemical route has been recently utilized to produce this kind of composite coatings. Mg ion plays a key role in bone metabolism, since it influences osteoblast and osteoclast activity. From previous studies, it has been found that Mg ions improve the bone formation on Ti alloys. PEO is a promising technology to produce porous and firmly adherent inorganic Mg containing $TiO_2$($Mg-TiO_2$ ) coatings on Ti surface, and the amount of Mg introduced into the coatings can be optimized by altering the electrolyte composition. In this study, a series of $Mg-TiO_2$ coatings are produced on Ti-6Al-4V ELI dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. Based on the preliminary analysis of the coating structure, composition and morphology, a bone like apatite formation model is used to evaluate the in vitro biological responses at the bone-implant interface. The enhancement of the bone like apatite forming ability arises from $Mg-TiO_2$ surface, which has formed the reduction of the Mg ions. The promising results successfully demonstrate the immense potential of $Mg-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Shear bond strength of composite resin to titanium according to various surface treatments

  • Lee, Seung-Yun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제1권2호
    • /
    • pp.68-74
    • /
    • 2009
  • STATEMENT OF PROBLEM. When veneering composite resin-metal restoration is prepared, the fact that bond strength between Ti and composite resin is relatively weak should be considered. PURPOSE. The purpose of this study is to evaluate the shear bond strength between the veneering composite resin and commercial pure (CP) Ti / Ti-6Al-4V alloy according to the method of surface treatment. MATERIAL AND METHODS. The disks were cast by two types of metal. Their surfaces were treated by sandblasting, metal conditioner, TiN coating and silicoating respectively. After surface treatment, the disks were veneered by composite resin (Tescera$^{TM}$, Bisco, USA) which is 5 mm in diameter and 3 mm in thickness. The specimens were stored in water at $25^{\circ}C$ for 24 hours, and then evaluated for their shear bond strength by universal testing machine (STM-$5^{(R)}$, United Calibration, USA). These values were statistically analyzed. RESULTS. 1. All methods of surface treatment were used in this study satisfied the requirements of ISO 10477 which is the standard of polymer-based crown and bridge materials. 2. The metal conditioner treated group showed the highest value in shear bond strength of CP Ti, silicoated group, TiN coated group, sandblasted group, in following order. 3. The silicoated group showed the highest value in shear bond strength of Ti-6Al-4V alloy, metal conditioner treated group, sandblasted group, TiN coated group, in following order. CONCLUSION. Within the limitations of this study, all methods of surface treatment used in this study are clinically available.

Si and Mg doped Hydroxyapatite Film Formation by Plasma Electrolytic Oxidation

  • Park, Seon-Yeong;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.195-195
    • /
    • 2016
  • Titanium and its alloys are widely used as implants in orthopedics, dentistry and cardiology due to their outstanding properties, such as high strength, high level of hemocompatibility and enhanced biocompatibility. Hence, recent works showed that the synthesis of new Ti-based alloys for implant application involves more biocompatible metallic alloying element, such as, Nb, Hf, Zr and Mo. In particular, Nb and Hf are one of the most effective Ti ${\beta}-stabilizer$ and reducing the elastic modulus. Plasma electrolyte oxidation (PEO) is known as excellent method in the biocompatibility of biomaterial due to quickly coating time and controlled coating condition. The anodized oxide layer and diameter modulation of Ti alloys can be obtained function of improvement of cell adhesion. Silicon (Si) and magnesium (Mg) has a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. In vitro studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The aim of this study is to research Si and Mg doped hydroxyapatite film formation by plasma electrolytic oxidation. Ti-29Nb-xHf (x= 0, 3, 7 and 15wt%, mass fraction) alloys were prepared Ti-29Nb-xHf alloys of containing Hf up from 0 wt% to 15 wt% were melted by using a vacuum furnace. Ti-29Nb-xHf alloys were homogenized for 2 hr at $1050^{\circ}C$. Each alloy was anodized in solution containing typically 0.15 M calcium acetate monohydrate + 0.02 M calcium glycerophosphate at room temperature. A direct current power source was used for the process of anodization. Anodized alloys was prepared using 270V~300V anodization voltage at room. A Si and Mg coating was produced by RF-magnetron sputtering system. RF power of 100W was applied to the target for 1h at room temperature. The microstructure, phase and composition of Si and Mg coated oxide surface of Ti-29Nb-xHf alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Plasma Electrolytic Oxidation in Surface Modification of Metals for Electronics

  • Sharma, Mukesh Kumar;Jang, Youngjoo;Kim, Jongmin;Kim, Hyungtae;Jung, Jae Pil
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.27-33
    • /
    • 2014
  • This paper presents a brief summary on a relatively new plasma aided electrolytic surface treatment process for light metals. A brief discussion regarding the advantages, principle, process parameters and applications of this process is discussed. The process owes its origin to Sluginov who discovered an arc discharge phenomenon in electrolysis in 1880. A similar process was studied and developed by Markov and coworkers in 1970s who successfully deposited an oxide film on aluminium. Several investigation thereafter lead to the establishment of suitable process parameters for deposition of a crystalline oxide film of more than $100{\mu}m$ thickness on the surface of light metals such as aluminium, titanium and magnesium. This process nowadays goes by several names such as plasma electrolytic oxidation (PEO), micro-arc oxidation (MOA), anodic spark deposition (ASD) etc. Several startups and surface treatment companies have taken up the process and deployed it successfully in a range of products, from military grade rifles to common off road sprockets. However, there are certain limitations to this technology such as the formation of an outer porous oxide layer, especially in case of magnesium which displays a Piling Bedworth ratio of less than one and thus an inherent non protective oxide. This can be treated further but adds to the cost of the process. Overall, it can be said the PEO process offers a better solution than the conventional coating processes. It offers advantages considering the fact that he electrolyte used in PEO process is environmental friendly and the temperature control is not as strict as in case of other surface treatment processes.

Machined 티타늄 임플란트와 calcium phosphate coated 티타늄 임플란트의 조직형태계측학적 연구 (Histomorphometric study of machined titanium implants and calcium phosphate coated titanium implants)

  • 강현주;양재호
    • 대한치과보철학회지
    • /
    • 제48권2호
    • /
    • pp.122-127
    • /
    • 2010
  • 연구목적: 본 연구는 machined 임플란트와 골유도능이 있는 calcium phosphate를 electron-beam deposition으로 coating처리한 임플란트의 골/임플란트 접촉률을 조직형태계측학적으로 비교하는 것이다. 연구 재료 및 방법:여섯 마리의 수컷 New Zealand white rabbit과직경3.3 mm, 길이 5 mm의 임플란트 24개를 준비하였다. Machined 임플란트 (대조군)와 calcium phosphate coated 임플란트(실험군)를 좌, 우 경골에 2개씩 총 4개를 식립하고 임플란트 주위에 부하가 가해지지 않도록 하여 3주, 6주의 치유기간을 두었다. 식립 3주와 6주후, 각각 3마리의 토끼를 희생하여 조직시편을 제작하였다. 제작된 시편을 광학현미경 하에서 골/임플란트 접촉률 (BIC ratio)을 계산하고 paired t-test로 두 군을 비교하였다. 결과:골/임플란트 접촉률은 임플란트 식립 3주후, 대조군에서 평균과 표준편차는$44.1{\pm}16.5%$ 이었고 실험군은 $70.8{\pm}18.9%$로 실험군이 통계적으로 유의하게 높았다 (P= 0.0264). 6주후의경우, machined 임플란트는 $78.6{\pm}15.1%$, calcium phosphate coated 임플란트는 $79.0{\pm}26.0%$로 두 군 간 통계적으로 유의한 차이는 없었다. 결론: Calcium phosphate coated 임플란트는 machined 티타늄 임플란트에 비해 빠른 초기 골반응을 나타냈다. 그러므로, 임상적으로 calcium phosphate coated 임플란트를 사용했을 때, 수술 후 치유 기간을 단축하여 조기 부하가 가능할 것으로 사료된다.

세라믹과 지르코니아의 골유착에 관한 고찰 (Osseointegration of Ceramics & Zirconia : A Review of Literature)

  • 송영균
    • 구강회복응용과학지
    • /
    • 제28권3호
    • /
    • pp.319-326
    • /
    • 2012
  • 세라믹은 오랜 기간 동안 치과용 수복재로 사용되어 왔다. 세라믹이 치과학에 도입되면서, 치과용 수복물은 심미성 면에서 눈부신 발전을 하게 되었다. 그러나 최근 세라믹은 수복재료뿐만 아니라 생체재료로서 주목을 받고 있다. 알루미늄 옥사이드와 사파이어등으로 시작된 연구는 지르코니아가 등장함에 따라 새로운 국면을 맞게 되었다. 특히 지르코니아는 색상이나, 기계적 성질, 생체친화성 등 여러 가지 장점 때문에 전통적으로 임플란트 고정체의 주재료이었던 티타늄의 대체 물질로 연구가 진행되고 있다. 지르코니아의 골반응은 매우 우수하지만, 표면 처리가 매우 어렵기 때문에 표면 처리된 티타늄보다는 뛰어나지 못하다는 내용들이 보고되고 있다. 이러한 한계점을 벗어나기 위해, 표면에 화학처리를 하거나 처음부터 다공성 형태를 갖도록 성형하는 방법과 다른 물질로 코팅처리하는 방법들이 소개되었고, 그 결과 수종의 지르코니아 임플란트가 현재 상용화된 상태이다. 앞으로 골이식재 구성성분으로서의 연구 등 다양한 목적의 생체재료로서 지르코니아의 활용에 대한 연구가 이루어질 것으로 사료된다. 이 논문에서는 생체재료로서의 지르코니아에 대한 연구와 앞으로의 발전가능성 등에 관한 문헌을 고찰할 것이다.

전극함몰형 실리콘 태양전지의 제작시 스프레이 방법에 의한 타이타늄 옥사이드층의 적용에 관한 연구 (Titanium dioxide by spray deposition for buried contact silicon solar cells fabrication)

  • A.U. Ebong;S.H. Lee
    • 한국결정성장학회지
    • /
    • 제6권2호
    • /
    • pp.263-274
    • /
    • 1996
  • 타이타늄 옥사이드층을 태양전지의 표면 보호막으로 사용시, 그 적합성에 대해 조사하였다. 스프레이법으로 형성된 타이타늄 옥사이드의 박막층은 태양전지 제조 과정중 사용되는 화학약품에 잘 견디며, 이 층을 사용함으로서 고온산화공정을 줄일 수 있다.

  • PDF