• 제목/요약/키워드: Titanium post

검색결과 121건 처리시간 0.021초

반복하중하에서의 carbon fiber post의 파절강도에 관한 연구 (A STUDY ON THE FRACTURE STRENGTH OF TEETH RESTORED WITH A CARBON FIBER POST UNDER CYCLIC LOADING)

  • 이양진
    • 대한치과보철학회지
    • /
    • 제38권5호
    • /
    • pp.640-649
    • /
    • 2000
  • In the restoration of endodontically treated teeth, carbon fiber post was recently introduced. The purpose of this in vitro study was to investigate the fracture strength of teeth restored with a pre-fabricated carbon fiber post in comparison with teeth restored with a prefabricated titanium post & custom cast gold post after cyclic loading in the different environment. A total of 30 recently extracted human central incisors of similar dimension with crowns removed were used. All teeth were placed into acrylic blocks and every steps for post and core fabrication were made accord-ing to manufacture's instruction. The post length and core dimensions were standardizd. All teeth were divided into 6 groups: 1) carbon fiber post / atmosphere, 2) titanium post / atmosphere, 3) gold post / atmosphere, 4) carbon fiber post / wet, 5) titanium post / wet, 6) gold post / wet. Carbon fiber post and titanium post were cemented in place using resin cement and cores were fabricated with Ti-Core. Custom cast gold post was made from Duralay pattern resin and cemented using resin cement, too. All specimens were thermocycled 10,000 times. After 50,000 cyclic loading, failure strength was measured using Instron testing machine. Kruskal-Wallis test followed by Mann-Whitney test was used to compare the mean fracture strength. Results were as follows : 1. All specimens showed lower fracture strength in wet environment after cyclic loading than in atmosphere condition, but did not reveal a significant difference. 2. There was no significant difference between carbon fiber post specimen and titanium post specimen in the same environment. 3. Gold cast post specimen showed significant different greater fracture strength than those of others in the same environment. 4. Carbon fiber post specimen showed no root fracture.

  • PDF

Physical and mechanical changes on titanium base of three different types of hybrid abutment after cyclic loading

  • Rimantas Oziunas;Jurgina Sakalauskiene;Laurynas Staisiunas;Gediminas Zekonis;Juozas Zilinskas;Gintaras Januzis
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권1호
    • /
    • pp.33-43
    • /
    • 2023
  • PURPOSE. This study investigated the physical and mechanical changes in the titanium base of three different hybrid abutment materials after cyclic loading by estimating the post-load reverse torque value (RTV), compressive side fulcrum wear pattern of titanium base, and surface roughness. MATERIALS AND METHODS. A total of 24 dental implants were divided into three groups (n = 8 each): Group Z, LD, and P used zirconia, lithium disilicate, and polyetheretherketone, respectively, for hybrid abutment fabrication. RTV was evaluated after cyclic loading with 50 N for 1.2 × 106 chewing cycles. The compressive sides of the titanium bases were analyzed using a scanning electron microscope, and the roughness of the affected areas was measured using an optical profilometer after loading. Datasets were analyzed using Kruskal-Wallis test followed by Mann-Whitney tests with the Bonferroni correction (α = .05). RESULTS. Twenty-three samples passed the test; one LD sample fractured after 770,474 cycles. Post-load RTV varied significantly depending on the hybridabutment material (P = .020). Group P had a significantly higher median of post-load RTVs than group Z (16.5 and 14.3 Ncm, respectively). Groups LD and P showed minor signs of wear, and group Z showed a more pronounced wear pattern. While evaluating compressive side affected area roughness of titanium bases, lower medians were shown in group LD (Ra 0.16 and Rq 0.22 ㎛) and group P (Ra 0.16 and Rq 0.23 ㎛) than in group Z (Ra 0.26 and Rq 0.34 ㎛); significant differences were found only among the unaffected surface and group Z. CONCLUSION. The hybrid abutment material influences the post-load RTV. Group Z had a more pronounced wear pattern on the compressive side of titanium base; however, the surface roughness was not statistically different among the hybridabutment groups.

Outcomes of Cranioplasty Using Autologous Bone or 3D-Customized Titanium Mesh Following Decompressive Craniectomy for Traumatic Brain Injury: Differences in Complications

  • Kim, Junwon;Kim, Jang Hun;Kim, Jong Hyun;Kwon, Taek-Hyun;Roh, Haewon
    • Journal of Trauma and Injury
    • /
    • 제32권4호
    • /
    • pp.202-209
    • /
    • 2019
  • Purpose: Cranioplasty (CP) is often required for survival after decompressive craniectomy. Several materials, including autologous bone and various artificial materials, have been introduced for CP, but it remains unclear which material is best for CP. This study aimed to explore differences in complications between patients who underwent CP using an autologous bone flap versus a three-dimensional (3D) titanium mesh and to identify significant risk factors for post-CP complications. Methods: In total, 44 patients were enrolled in this study and divided into two groups (autologous bone vs. 3D titanium mesh). In both groups, various post-CP complications were evaluated. Through a comparative analysis, we aimed to identify differences in complications between the two groups and, using binary logistic analysis, to determine significant factors associated with complications after CP. Results: In the autologous bone flap group, there were three cases of surgical infection (3/24, 12.5%) and 11 cases of bone flap resorption (BFR) (11/24, 45.83%). In the 3D titanium mesh group, there was only one case of surgical infection (1/20, 5%) and 11 cases of various complications, including mainly cosmetic issues (11/20, 55%). A subgroup risk factor analysis of CP with an autologous bone flap showed no risk factors that predicted BFR with statistical significance, although a marginal association was found between larger bone flaps and BFR (odds ratio [OR]=1.037, p=0.090). In patients treated with a 3D titanium mesh, multivariate analysis revealed that only the existence of a ventriculo-peritoneal shunt system was strongly associated with overall post-CP complications (OR=18.66, p=0.021). Conclusions: Depending on which material was used, different complications could occur, and the rate of complications was relatively high in both groups. Hence, the material selected for CP should be selected based on individual patients' conditions.

Assessment of the efficiency of a pre- versus post-acquisition metal artifact reduction algorithm in the presence of 3 different dental implant materials using multiple CBCT settings: An in vitro study

  • Shahmirzadi, Solaleh;Sharaf, Rana A.;Saadat, Sarang;Moore, William S.;Geha, Hassem;Tamimi, Dania;Kocasarac, Husniye Demirturk
    • Imaging Science in Dentistry
    • /
    • 제51권1호
    • /
    • pp.1-7
    • /
    • 2021
  • Purpose: The aim of this study was to assess artifacts generated in cone-beam computed tomography (CBCT) of 3 types of dental implants using 3 metal artifact reduction (MAR) algorithm conditions (pre-acquisition MAR, post-acquisition MAR, and no MAR), and 2 peak kilovoltage (kVp) settings. Materials and Methods: Titanium-zirconium, titanium, and zirconium alloy implants were placed in a dry mandible. CBCT images were acquired using 84 and 90 kVp and at normal resolution for all 3 MAR conditions. The images were analyzed using ImageJ software (National Institutes of Health, Bethesda, MD) to calculate the intensity of artifacts for each combination of material and settings. A 3-factor analysis of variance model with up to 3-way interactions was used to determine whether there was a statistically significant difference in the mean intensity of artifacts associated with each factor. Results: The analysis of all 3 MAR conditions showed that using no MAR resulted in substantially more severe artifacts than either of the 2 MAR algorithms for the 3 implant materials; however, there were no significant differences between pre- and post-acquisition MAR. The 90 kVp setting generated less intense artifacts on average than the 84 kVp setting. The titanium-zirconium alloy generated significantly less intense artifacts than zirconium. Titanium generated artifacts at an intermediate level relative to the other 2 implant materials, but was not statistically significantly different from either. Conclusion: This in vitro study suggests that artifacts can be minimized by using a titanium-zirconium alloy at the 90 kVp setting, with either MAR setting.

안와골절 정복술에 사용된 인공삽입물의 전산화단층촬영 추적관찰 (CT Observation of Alloplastic Materials Used in Blow Out Fracture)

  • 이원;강동희
    • Archives of Plastic Surgery
    • /
    • 제37권4호
    • /
    • pp.380-384
    • /
    • 2010
  • Purpose: Distinguishing different types of implants and assessing the position and size of implants by radiologic exam after orbital wall reconstruction is important in determining the surgery outcome and forecasting prognosis. We observed time-dependent density changes in three types of implants (porous polyethylene, resorbing plate and titanium mesh plate) by performing facial bone CT after orbital wall reconstructions. Methods: A total of 32 patients, who had underwent orbital wall fracture surgery from October 2006 to March 2009 and received facial bone CT as outpatients at 1 postoperative year were included in the study. Follow-up facial bone CT was performed on the patients pre- operatively, 1 month post-operatively, and 1 year post-operatively to observe the status of the orbital implants. Medpor $^{(R)}$ (Porex Surgical, Inc., Newnan, Ga.) was used as porous polyethylene and followed-up in 14 cases; for resorbing plate, Synthes mesh plate (Synthes, Oberdorf, Switzerland) was used in the reconstruction, and followed-up in 11 cases; and titanium mesh plate usage was followed-up in 7 cases. Computed tomographic scan (CT) and water's view were done for radiography, and hounsfield unit (HU) was used to compare density of those facial bone CT. Wilcoxon signed rank test was applied to statistically verify measurement difference in each group of hounsfield units. Results: Facial bone CT examination performed in 1 month post-operative showed that the density of porous polyethylene, resorbing plate and titanium mesh plate were -42.07, 105.67 and 539.48 on average, respectively. Among the three types of implants, titanium mesh plate showed the highest density due to its radiopaque feature. Following up the density of three types of implants in CT during 1 year after the orbital wall fracture surgery, the density of porous polyethylene increased in 10.52 House Field Units and the resorbing plate was decreased in 26.87 HouseField Units. There were no significant differences between densities in 1 month post-operatively and 1 year post-operatively in each group ($p{\geq}0.05$). Conclusion: We performed facial bone CT on patients with orbital fractures during follow-up period, distinguishing the types of implants by the different concentration of implant density, and the densities showed little change even at 1 year post-operative. To observe how implant densities change in facial bone CT, further studies with longer follow-up periods should be carried out.

Effect of Post-CMP Cleaning On Electrochemical Characteristics of Cu and Ti in Patterned Wafer

  • Noh, Kyung-Min;Kim, Eun-Kyung;Lee, Yong-Keun;Sung, Yun-Mo
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.174-178
    • /
    • 2009
  • The effects of post-CMP cleaning on the chemical and galvanic corrosion of copper (Cu) and titanium (Ti) were studied in patterned silicon (Si) wafers. First, variation of the corrosion rate was investigated as a function of the concentration of citric acid that was included in both the CMP slurry and the post-CMP solution. The open circuit potential (OCP) of Cu decreased as the citric acid concentration increased. In contrast with Cu, the OCP of titanium (Ti) increased as this concentration increased. The gap in the OCP between Cu and Ti increased as citric acid concentration increased, which increased the galvanic corrosion rate between Cu and Ti. The corrosion rates of Cu showed a linear relationship with the concentrations of citric acid. Second, the effect of Triton X-$100^{(R)}$, a nonionic surfactant, in a post-CMP solution on the electrochemical characteristics of the specimens was also investigated. The OCP of Cu decreased as the surfactant concentration increased. In contrast with Cu, the OCP of Ti increased greatly as this concentration increased. Given that Triton X-$100^{(R)}$ changes its micelle structure according to its concentration in the solution, the corrosion rate of each concentration was tested.

치주지지가 감소된 상태에서 섬유강화형 포스트로 수복한 치아의 실패양상 분석 (AN ANALYSIS OF FAILURE MODE OF TEETH RESTORED WITH FIBER-REINFORCED POSTS UNDER THE CONDITION OF BONY RESORPTION)

  • 이병우;이양진;조리라;박찬진
    • 대한치과보철학회지
    • /
    • 제41권2호
    • /
    • pp.232-242
    • /
    • 2003
  • Statement of problem : Fiber-reinforced posts have lower modulus of elasticity than titanium post or cast post-core. With this similar elasticity to that of dentin, fiber-reinforced posts have been known to have a tendency to reduce the risk of root fracture. However, there were few studies on the teeth restored with fiber-reinforced posts under the condition of reduced periodontal support. Purpose : The purpose of this study was to evaluate the fracture strength and failure mode of endodontically treated teeth restored with fiber-reinforced posts and titanium posts under the condition of reduced periodontal support. Material and method : Extracted human maxillary incisor roots were divided into 3 groups (group 1 carbon fiber post, group 2 : glass fiber post, and group 3 : titanium alloy post). After coronectomy and endodontic treatment, teeth were restored with each post systems and resin core according to the manufacturer's recommendation. Then, teeth with simulated periodontal ligament were embedded in the acrylic resin blocks at the level of 4 mm below the cemento-enamel junction. Each specimen was exposed to $10^5$ load cycles with average 30 N force in $36.5^{\circ}C$ water using a computer-controlled chewing simulator. Loads were applied at $45^{\circ}$ angle to the long axis of the teeth. After cyclic loading, teeth were subjected a compressive load until failure at a crosshead speed of 0.5 mm/min. Fracture strength (N) and failure mode were examined. The fracture strength was analyzed with one-way ANOVA and the Scheffe adjustment at the 95% significance level. Results and conclusion : The results were as follows. 1. There was no statistically significant difference in the mean fracture strength among the groups (P<.05). 2. Carbon fiber post and glass fiber post group showed less root fracture tendency than control group. 3. All specimens with root fractures showed fracture lines above the level of acrylic resin block, except for only one specimen in group 3.

FRACTURE STRENGTH AND FRACTURE MODE OF RESIN ROOT ANALOGS RESTORED WITH VARIOUS POST AND CORE MATERIALS

  • Lee, Byung-Chul;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho;Lee, Sun-Hyung
    • 대한치과보철학회지
    • /
    • 제40권3호
    • /
    • pp.287-295
    • /
    • 2002
  • Statement of Problem. Endodontically treated teeth frequently required posts and cores to provide retention and resistance form for crowns. In spite of excellent mechanical properties of metal post and core, its metallic color can be detected through all ceramic restorations occasionally. To solve esthetic problems of metal post and core zirconia post system has been introduced recently. Purpose. The purpose of this study was to examine the fracture strength and mode of resin root analogs restored with zirconia, gold and titanium posts with resin, ceramic and metal cores after cementation with metal crowns. Materials and methods. To avoid the morphological variations of natural teeth, 40 root analogs were fabricated with composite resin. Forty resin root analogs were randomly assigned to four groups according to post and core materials: Group A: cast gold post and core and complete cast crowns, as control. Group B: titanium posts (Parapost, Coltent/Whaledent Inc., NJ, USA) and composite resin cores. Group C: zirconia posts (Cosmopost, Ivoclar AG, Schaan/Liechtenstein) and composite resin cores Group D: zirconia posts and heat-pressed ceramic cores (IPS Empress Cosmo Ingots, Ivoclar AG) After thermocycling ($5^{\circ}C{\sim}55^{\circ}C$, 30 sec.), cyclic loading was applied at 3mm below the incisal edge on the palatal surfaces at an angle of 135 degree to the long axis (2Hz, 50N, 50000cycles). Fracture strength was measured by universal testing machine (Instron, High Wycombe, UK) and fracture pattern of restored resin root analogs was also evaluated. Results and conclusion. Within the limitations of this study following results were drawn. 1. Resin root analogs restored with zirconia posts and composite resins demonstrated lowest fracture strength among tested groups. 2. There was no significant difference in the fracture strength between zirconia posts and heat pressed glass ceramic cores and cast gold posts and cores 3. The fracture strength of resin root analogs restored with titanium posts and composite resin cores was lower than that of gold posts and cores. 4. The deep oblique fracture lines were dominantly observed in root analogs restored with cast gold post and core and zirconia post and heat-pressed ceramic core groups.

근관형성 기구 및 방법에 따른 근관 형태의 변화 (CHANGES IN ROOT CANAL CONFIGURATION USING DIFFERENT FILE TYPES AND TECHNIQUES)

  • 허영주;김성교
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.291-304
    • /
    • 1997
  • The purposes of this study were to evaluate the changes in root canal configuration with canal instrumentation using different file types and techniques and to investigate most appropriate instrumentation technique in maintaining the original canal configuration with different file types. Fifty curved mesiobuccal or distobuccal canals of extracted human maxillary molar teeth were instrumented using a step-back technique with stainless steel K-files or nickel-titanium K-files, a crown-down pressureless technique with stainless steel K-files or nickel-titanium K-files and nickel-titanium engine-driven files. Radiographs were taken before and after instrumentation using a specially designed device that allowed for the pre-and postinstrumentation canals to be taken with the same X-ray angulation. Magnified X-ray images on a magnifier screen were traced and post instrumentation canal images were compared with the preinstrumentation ones. Changes in canal curvature and the incidence of procedural accidents were analyzed. The results were as follows : Crown-down pressureless technique with nickel-titanium K-files and nickel-titanium engine-driven filing produced no significant changes in canal curvature (p>0.05), while the step-back technique with stainless steel K-files or nickel-titanium K-files (p<0.01) and the crown-down pressureless technique with stainless steel K-files (p<0.05) produced significant changes. With nickel-titanium K-file, crown-down pressureless technique produced significantly less changes in canal curvature than step-back technique (p<0.05), while there was no significant difference between techniques with stainless steel K-files (p>0.05). File types exerted no significant influences in the changes of canal curvature both in the step-back technique and crown-down pressureless technique (0>0.05). Regardless of the file types used, step-back technique produced more procedural accidents such as ledge or elbow formation, apical zipping and apical transportation than the crowndown pressureless technique and nickel-titanium engine-driven filing. Both with stainless steel K-files and with nickel-titanium K-files, the incidence of apical extrusion of canal debris was higher in step-back technique than in crown-down pressureless technique.

  • PDF

Optical Reactivity Modification of Titanium Oxide coatings on Ceramic filters by Nitrogen ion Implantation

  • 김형진;박재원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.90-90
    • /
    • 2010
  • We investigated the modification of optical response properties of titanium dioxide (TiO2) coatings on the ceramic water-purification filters by using ultraviolet-visible absorption spectroscopy and X-ray diffraction. The TiO2 coatings were prepared on ceramic substrate by e-beam evaporation method. These amorphous TiO2 were turned into anatase phase by heat treatment at $700^{\circ}C$ for 2 hours. The doping of N atoms into the TiO2 coatings was done by using 70KeV of N+ ion implantation with the dose of $1.0{\times}1017$ ions/cm2, followed by post-irradiation heat treatment at $550^{\circ}C$ for 2 hours. Methylene blue test of TiO2 coatings to solar irradiation showed that the post-evaporation heated TiO2 was photocatalytic and N-doped TiO2 reacted to the visible part of solar irradiation.

  • PDF