• Title/Summary/Keyword: Titanium mesh plate

Search Result 19, Processing Time 0.024 seconds

Treatment of Blow-out Fractures Using Both Titanium Mesh Plate and Porous Polyethylene (Medpor®) (광범위한 안와파열골절에서 Titanium Mesh Plate와 Porous Polyethylene (Medpor®) 동시 사용의 유용성)

  • Gu, Ja Hea;Won, Chang Hoon;Dhong, Eun-Sang;Yoon, Eul-Sik
    • Archives of Craniofacial Surgery
    • /
    • v.11 no.2
    • /
    • pp.85-90
    • /
    • 2010
  • Purpose: The goals of a blow-out fracture reconstruction are to restore the osseous continuity, provide support for the orbital contents and prevent functional and anatomic defects. Over the past several years, a range of autogenous and synthetic implants have been used extensively in orbital reconstructions. None of these implants have any absolute indications or contraindications in certain clinical settings. However, in extensive blow-out fractures, it is difficult to restore support of the orbital contents, which can cause more complications, such as enophthalmos. This study examined the clinical outcomes of extensive or comminuted blow-out fractures that were reconstructed by the simultaneous use of a titanium mesh plate and $Medpor^{(R)}$. Methods: Eighty six patients with extensive orbital fractures, who were admitted between March 1999 and February 2007, were reviewed retrospectively. The patients' chart and CT were inspected for review. Twenty three patients were operated on with both a titanium mesh plate (Matrix MIDFACE pre-formed orbital plate, Synthes, USA) and $Medpor^{(R)}$ (Porex, GA, USA). The patients underwent pre-operative CT scans to evaluate the fracture site and measure the area of the fracture. A transconjunctival approach was used, and titanium mesh plates were inserted subperiosteally with screw fixation. $Medpor^{(R)}$ was inserted above the titanium mesh plate. The patients were evaluated post-operatively for enophthalmos, diplopia, sensory disturbances and eyeball movement for a period of at least 6 months. Results: No implant-related complications were encountered during the follow-up period. Enophthalmos occurred in 1 patient, 1 patient had permanent sensory disturbance, and 3 patients complained of ocular pain and fatigue, which recovered without treatment. Although there were no significance differences between groups, the use of 2 implants had fewer complications. Therefore, it can be an alternative method for treating blow out fractures. Conclusion: The use of both a titanium mesh plate and $Medpor^{(R)}$ simultaneously may be a safe and acceptable technique in the reconstruction of extensive blow-out fractures.

Comparison of Sequelae According to the Types of Implants in Blow-Out Fracture (안와 파열 골절 치료 시 삽입물 종류에 따른 후유증 비교)

  • Kim, Tae-Gon;Im, Jong-Hyo;Lee, Jun-Ho;Kim, Yong-Ha
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • Purpose: Blow out fracture can present tenderness, swelling, enophthalmos, extraoccular muscle limitation, paresthesia, diplopia according to severity of injury, so reconstruction of blow out fracture is important. Orbital soft tissue should be in orbit and defected orbital wall should be corrected by autologus tissue or alloplastic implants. Every implants have their merits and faults, every implants are used various. This study was designed to compare the sequelae of blow-out fracture repair using the alloplastic implants: micro-titanium mesh(Micro Dynamic titanium $mesh^{(R)}$, Leibinger, Germany), porous polyethylene ($Medpor^{(R)}$, Porex, USA), absorbable mesh plate(Biosorb $FX^{(R)}$ . Bionx Implants Ltd, Finland). Methods: Between January 2006 and April 2008, 52 patients were included in a retrospective study analysing the outcome of corrected inferior orbital wall fracture with various kind of implants. Implants were inserted through subciliary incision. Twenty patients were operated with micro-titanium mesh, fourteen patients with porous polyethylene and eighteen patients with absorbable mesh plate. In comparative category, enophthalmos, diplopia, range of motion of extraoccular muscle, inferior orbital nerve injury were more on frequently statistically in patients. Results: Fourteen of 18 patients underwent surgical repair to improve diplopia, 11 of 17 patients to improve parasthesia, 11 of 15 patients to improve enophthalmos, 8 of 9 patients to improve extraoccular muscle limitation. Duration of follow-up time ranged from 6 months to 12 months(mean, 7.4 months). There was no statistic difference of sequelae between micro titanium mesh and porous polyethylene and absorbable mesh plate in blowout fracture, inferior wall. Conclusion: There is no difference of sequelae between micro-titanium mesh, porous polyethylene and absorbable mesh plate in blow-out fracture, inferior wall. The other factors such as defect size, location, surgeon's technique, may influence the outcome of blow-out fracture repair.

A novel technique for placing titanium mesh with porous polyethylene via the endoscopic transnasal approach into the orbit for medial orbital wall fractures

  • Bae, Seong Hwan;Jeong, Dae Kyun;Go, Ju Young;Park, Heeseung;Kim, Joo Hyoung;Lee, Jae Woo;Kang, Taewoo
    • Archives of Plastic Surgery
    • /
    • v.46 no.5
    • /
    • pp.421-425
    • /
    • 2019
  • Background The endoscopic transnasal approach is widely used for reconstructing the medial orbital wall by filling it with a silicone sheet or Merocel, but this technique has the disadvantage of retaining the packing for a long time. To overcome this drawback, a method of positioning an absorbable plate in the orbit has been introduced, but there is a risk of defect recurrence after the plate is absorbed. Here, the authors report the results of a novel surgical technique of placing a nonabsorbable titanium mesh with porous polyethylene into the orbit through the endoscopic transnasal approach. Methods Fourteen patients underwent surgery using the endoscopic transnasal approach. Preoperative computed tomography (CT) was used to calculate the size of the bone defect due to the fracture, and the titanium mesh was designed to be shorter than the anteroposterior length of the defect and longer than its height. The titanium mesh was inserted into the orbit under an endoscopic view. The authors then confirmed that the titanium mesh supported the orbital contents by pressing the eyeball and finished the operation. Immediately after surgery, CT results were evaluated. Results Postoperative CT scans confirmed that the titanium mesh was well-inserted and in the correct position. All patients were discharged without any complications. Conclusions We obtained satisfactory results by inserting a titanium mesh with porous polyethylene into the orbit via the transnasal approach endoscopically.

CT Observation of Alloplastic Materials Used in Blow Out Fracture (안와골절 정복술에 사용된 인공삽입물의 전산화단층촬영 추적관찰)

  • Lee, Won;Kang, Dong-Hee
    • Archives of Plastic Surgery
    • /
    • v.37 no.4
    • /
    • pp.380-384
    • /
    • 2010
  • Purpose: Distinguishing different types of implants and assessing the position and size of implants by radiologic exam after orbital wall reconstruction is important in determining the surgery outcome and forecasting prognosis. We observed time-dependent density changes in three types of implants (porous polyethylene, resorbing plate and titanium mesh plate) by performing facial bone CT after orbital wall reconstructions. Methods: A total of 32 patients, who had underwent orbital wall fracture surgery from October 2006 to March 2009 and received facial bone CT as outpatients at 1 postoperative year were included in the study. Follow-up facial bone CT was performed on the patients pre- operatively, 1 month post-operatively, and 1 year post-operatively to observe the status of the orbital implants. Medpor $^{(R)}$ (Porex Surgical, Inc., Newnan, Ga.) was used as porous polyethylene and followed-up in 14 cases; for resorbing plate, Synthes mesh plate (Synthes, Oberdorf, Switzerland) was used in the reconstruction, and followed-up in 11 cases; and titanium mesh plate usage was followed-up in 7 cases. Computed tomographic scan (CT) and water's view were done for radiography, and hounsfield unit (HU) was used to compare density of those facial bone CT. Wilcoxon signed rank test was applied to statistically verify measurement difference in each group of hounsfield units. Results: Facial bone CT examination performed in 1 month post-operative showed that the density of porous polyethylene, resorbing plate and titanium mesh plate were -42.07, 105.67 and 539.48 on average, respectively. Among the three types of implants, titanium mesh plate showed the highest density due to its radiopaque feature. Following up the density of three types of implants in CT during 1 year after the orbital wall fracture surgery, the density of porous polyethylene increased in 10.52 House Field Units and the resorbing plate was decreased in 26.87 HouseField Units. There were no significant differences between densities in 1 month post-operatively and 1 year post-operatively in each group ($p{\geq}0.05$). Conclusion: We performed facial bone CT on patients with orbital fractures during follow-up period, distinguishing the types of implants by the different concentration of implant density, and the densities showed little change even at 1 year post-operative. To observe how implant densities change in facial bone CT, further studies with longer follow-up periods should be carried out.

Preliminary Surgical Result of Cervical Spine Reconstruction with a Dynamic Plate and Titanium Mesh Cage

  • Chung, Dae-Yeong;Cho, Dae-Chul;Lee, Sun-Ho;Sung, Joo-Kyung
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.2
    • /
    • pp.111-117
    • /
    • 2007
  • Objective : The objective of this study was to validate the effects of a titanium mesh cage and dynamic plating in anterior cervical stabilization after corpectomy. Methods : A retrospective study was performed on 31 consecutive patients, who underwent anterior cervical reconstruction with a titanium mesh cage and dynamic plating, from March 2004 to February 2006. Twenty-four patients had 1-level and 7 had 2-level corpectomies. Ten patients underwent surgery with a cage of 10-mm diameter and 21 with 13-mm diameter. Neurological status and outcomes were assessed according to Odom's criteria. Sagittal angle, coronal angle, settling ratio, sagittal displacement, and cervical lordosis were used to evaluate the radiological outcomes. Results : In overall, 26 [83.9%] of 31 showed excellent or good outcomes. Thirteen percent [4 cases] of the patients developed surgical complications, such as hoarseness, transient dysphagia, or nerve root palsy. Seven [22.6%] patients had reconstruction failure:5 [20.8%] in the 1-level corpectomy group and 2 [28.5%] in the 2-level corpectomy group. Revisions were required in 2 patients with plate pullout due to significant instability. However, none of 5 patients who demonstrated cage displacement or screw pullout, underwent a revision. Radiographs revealed bony consolidation in 96.3% of the patients, including 6 patients with implantation failure during the follow-up period. Conclusion : Based on our preliminary results, the titanium mesh cage and dynamic plating was effective for cervical reconstruction after corpectomy. The anterior cervical reconstruction performed with dynamic plates is considered to reduce stress shielding and greater graft compression that is afforded by the unique plate design.

Influence of the Mold Temperature on the Castability of CP Ti (주형온도가 CP Ti의 주조성에 미치는 영향)

  • Jung, Jong-Hyun;Joo, Kyu-Ji;Go, Eun-Kyoung
    • Journal of Technologic Dentistry
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • The purpose of this study was to evaluate the titanium castability with a spin type casting machine(TiCast, Super R, Selec, Osaka. Japan). We tested phosphate bonded investment "Rematitan$^{(R)}$Plus(Dentaurum, Inc., Pforzheim, Germany)"of mesh grid pattern and plate pattern. Four different mold temperatures(room temperature, 200$^{\circ}C$, 400$^{\circ}C$ and 600$^{\circ}C$) were prepared for the present study. In mesh grid pattern with spruing of $\varphi$0.88㎜ dimeter, when the mold temperature increased, high percentage of castability was gained. Mold temperature showed a highly significant(p<0.05) correlation on the castability, In plate pattern, the higher the mold temperature during casting, the greater the adhesive phenomenon between Ti surface and the investment.

  • PDF

Comparison of Absorbable Mesh Plate versus Titanium-Dynamic Mesh Plate in Reconstruction of Blow-Out Fracture: An Analysis of Long-Term Outcomes

  • Baek, Woon Il;Kim, Han Koo;Kim, Woo Seob;Bae, Tae Hui
    • Archives of Plastic Surgery
    • /
    • v.41 no.4
    • /
    • pp.355-361
    • /
    • 2014
  • Background A blow-out fracture is one of the most common facial injuries in midface trauma. Orbital wall reconstruction is extremely important because it can cause various functional and aesthetic sequelae. Although many materials are available, there are no uniformly accepted guidelines regarding material selection for orbital wall reconstruction. Methods From January 2007 to August 2012, a total of 78 patients with blow-out fractures were analyzed. 36 patients received absorbable mesh plates, and 42 patients received titanium-dynamic mesh plates. Both groups were retrospectively evaluated for therapeutic efficacy and safety according to the incidence of three different complications: enophthalmos, extraocular movement impairment, and diplopia. Results For all groups (inferior wall fracture group, medial wall fractrue group, and combined inferomedial wall fracture group), there were improvements in the incidence of each complication regardless of implant types. Moreover, a significant improvement of enophthalmos occurred for both types of implants in group 1 (inferior wall fracture group). However, we found no statistically significant differences of efficacy or complication rate in every groups between both implant types. Conclusions Both types of implants showed good results without significant differences in long-term follow up, even though we expected the higher recurrent enophthalmos rate in patients with absorbable plate. In conclusion, both types seem to be equally effective and safe for orbital wall reconstruction. In particular, both implant types significantly improve the incidence of enophthalmos in cases of inferior orbital wall fractures.

The Inferior Orbital Wall Reconstruction by Titanium Micro-mesh Remodeling (Titanium Micro-mesh의 개형을 통한 하벽부 안와골절의 재건)

  • Kim, Han Koo;Choi, Min Seok;Kim, Woo Seob;Bae, Tae Hui
    • Archives of Craniofacial Surgery
    • /
    • v.10 no.2
    • /
    • pp.81-85
    • /
    • 2009
  • Purpose: The inferior orbital wall is the most vulnerable to injury and inadequate reconstruction of inferior orbital fracture result in postoperative complications include enophthalmos, ocular dystopia and diplopia. Although the anatomical reconstruction of the inferior orbital wall is necessary to prevent these complications, the complexity of inferior orbital wall makes it difficult. We fabricated and remodeled the titanium micro-mesh plate for the anatomical reconstruction of inferior orbital wall. Methods: Twenty-nine patients with inferior orbital wall blow-out fracture were operated and twelve of them presented large extensive fracture. We intraoperatively fabricated and remodeled the Titanium-micro mesh to angulated lazy S shape similar to contralateral uninjured orbit. The preoperative and postoperative facial CT scan verified the 3-dimensional and anatomical reconstruction of the fractures. The mean follow-up was 19.7 months and postoperative complications was evaluated. Results: All cases showed the exact anatomical reconstruction, but there were minor complications in two cases. one patient had postoperative diplopia until 3months after surgery and the other patient had persistent enophthalmos (2 mm), but no further surgical correction was required. Conclusion: The comprehensive understanding of orbital convexity is the most important factor for anatomical reconstruction of inferior orbital fracture. We could prevent postoperative complications after inferior orbital wall reconstruction by intraoperative fabrication and anatomical remodeling of Titanium micro-mesh.

Maxillary reconstruction using tunneling flap technique with 3D custom-made titanium mesh plate and particulate cancellous bone and marrow graft: a case report

  • Takano, Masayuki;Sugahara, Keisuke;Koyachi, Masahide;Odaka, Kento;Matsunaga, Satoru;Homma, Shinya;Abe, Shinichi;Katakura, Akira;Shibahara, Takahiko
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.43.1-43.5
    • /
    • 2019
  • Background: Reconstructive surgery is often required for tumors of the oral and maxillofacial region, irrespective of whether they are benign or malignant, the area involved, and the tumor size. Recently, three-dimensional (3D) models are increasingly used in reconstructive surgery. However, these models have rarely been adapted for the fabrication of custom-made reconstruction materials. In this report, we present a case of maxillary reconstruction using a laboratory-engineered, custom-made mesh plate from a 3D model. Case presentation: The patient was a 56-year-old female, who had undergone maxillary resection in 2011 for intraoral squamous cell carcinoma that presented as a swelling of the anterior maxillary gingiva. Five years later, there was no recurrence of the malignant tumor and a maxillary reconstruction was planned. Computed tomography (CT) revealed a large bony defect in the dental-alveolar area of the anterior maxilla. Using the CT data, a 3D model of the maxilla was prepared, and the site of reconstruction determined. A custom-made mesh plate was fabricated using the 3D model (Okada Medical Supply, Tokyo, Japan). We performed the reconstruction using the custom-made titanium mesh plate and the particulate cancellous bone and marrow graft from her iliac bone. We employed the tunneling flap technique without alveolar crest incision, to prevent surgical wound dehiscence, mesh exposure, and alveolar bone loss. Ten months later, three dental implants were inserted in the graft. Before the final crown setting, we performed a gingivoplasty with palate mucosal graft. The patient has expressed total satisfaction with both the functional and esthetic outcomes of the procedure. Conclusion: We have successfully performed a maxillary and dental reconstruction using a custom-made, pre-bent titanium mesh plate.

Open Reduction and Internal Fixation (ORIF) of Trapdoor Orbital Floor Blowout Fracture with Absorbable Mesh Plate (뚜껑문 안와저 골절에 있어서 망상 흡수성 판을 이용한 관혈적 정복술 및 내고정술)

  • Kwon, Yu-Jin;Kim, Ji-Hoon;Hwang, Jae-Ha;Kim, Kwang-Seog;Lee, Sam-Yong
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.619-625
    • /
    • 2010
  • Purpose: Trapdoor orbital blowout fracture is most common in orbital blowout fracture. Various materials have been used to reconstruct orbital floor blowout fracture. Absorbable alloplastic implants are needed because of disadvantages of nonabsorbable alloplastic materials and donor morbidity of autogenous tissue. The aim of the study is to evaluate usefulness of absorbable mesh plate as a reconstructive material for orbital blowout fractures. Methods: From December 2008 to October 2009, 18 trapdoor orbital floor blowout fracture patients were treated using elevator fixation, depressor fixation, or elevatordepressor fixation techniques with absorbable mesh plates and screw, depending on degree of orbital floor reduction, because absorbable mesh plates are less rigid than titanium plates and other artificial substitutes. Results: Among 18 patients, 5 elevator fixation, 4 depressor fixation, and 9 elevator and depressor fixation technique were performed. In all patients, postoperative computed tomographic (CT) scan showed complete reduction of orbital contents and orbital floor, and no displacement of bony fragment and mesh plate. Mean follow-up was 10 months. There were no significant intraoperative or postoperative complications. Conclusion: Three different techniques depending on the degree of orbital floor reduction are useful for open reduction and internal fixation of trapdoor orbital floor blowout fracture with absorbable mesh plates.