• 제목/요약/키워드: Titanium implants

검색결과 402건 처리시간 0.024초

Chitosan/hydroxyapatite composite coatings on porous Ti6Al4V titanium implants: in vitro and in vivo studies

  • Zhang, Ting;Zhang, Xinwei;Mao, Mengyun;Li, Jiayi;Wei, Ting;Sun, Huiqiang
    • Journal of Periodontal and Implant Science
    • /
    • 제50권6호
    • /
    • pp.392-405
    • /
    • 2020
  • Purpose: Titanium implants are widely used in the treatment of dentition defects; however, due to problems such as osseointegration failure, peri-implant bone resorption, and periimplant inflammation, their application is subject to certain restrictions. The surface modification of titanium implants can improve the implant success rate and meet the needs of clinical applications. The goal of this study was to evaluate the effect of the use of porous titanium with a chitosan/hydroxyapatite coating on osseointegration. Methods: Titanium implants with a dense core and a porous outer structure were prepared using a computer-aided design model and selective laser sintering technology, with a fabricated chitosan/hydroxyapatite composite coating on their surfaces. In vivo and in vitro experiments were used to assess osteogenesis. Results: The quasi-elastic gradient and compressive strength of porous titanium implants were observed to decrease as the porosity increased. The in vitro experiments demonstrated that, the porous titanium implants had no biological toxicity; additionally, the porous structure was shown to be superior to dense titanium with regard to facilitating the adhesion and proliferation of osteoblast-like MC3T3-E1 cells. The in vivo experimental results also showed that the porous structure was beneficial, as bone tissue could grow into the pores, thereby exhibiting good osseointegration. Conclusions: Porous titanium with a chitosan/hydroxyapatite coating promoted MC3T3-E1 cell proliferation and differentiation, and also improved osseointegration in vitro. This study has meaningful implications for research into ways of improving the surface structures of implants and promoting implant osseointegration.

성견에서 수산화인산염 피개 IMZ임플란트와 티타늄 피개 IMZ임플란트주위의 골형성 및 골성숙 정도에 대한 비교연구 (EFFECTS OF HYDROXYAPATITE AND TITANIUM-COATED DENTAL IMPLANTS ON BONE FORMATION AND MATURATION IN DOG)

  • 윤홍철;한동후
    • 대한치과보철학회지
    • /
    • 제33권2호
    • /
    • pp.317-334
    • /
    • 1995
  • The purpose of this study was to compare the bone formation, maturation around HA-and titaniumcoated dental implants in dog. 5 hydroxyapatite coated IMZ implants and 5 titanium coated IMZ implants were placed into the previously extracted site in the mandible of 5 adults dogs. All dogs were injected intravenously Tetracycline, Alizalin red S, and Calcein for bone fluorescent labelling, After the experimental period of 16weeks, the dogs were sacrificed and tissue samples around the implants were obtained. Microscopic observations(ligth, polariged and fluorescence microscope), morphometric analysis, line profile with EPMA, and quantitative analysis for Ca,P, and Ti were performed. The results were as follows ; 1. Bone maturations around the implants were relatively lower than those of natural teeth. No significant differences in bone maturation and remodeling patterns were observed between the two implants groups. 2. Calcification of bone surrounding the implants was initiated in 8-11 weeks for HA-coated implants, while it took 11 weeks or more for Ti-coated implants. 3. Bone-to-implants contact ratio of 82.63% was recorded for HA-coated group and 72.25% for titanium coated group, with no significant difference between the two groups. 4. Bone around the implants exhibited reduced quantity of Ca and P in the $100{\mu}m$ region relative to natural teeth, while the rest of the regions showed no statistical differences. No significant differences were found between the two implant groups. 5. There was a separation of HA layer from the implant core and subsequent infiltration of inflammatory cells into the resulting space in the HA-coated implants, and evidences of phagocytosis of HA particles by macrophages. Bone calcification was more rapid around HA-coated implants compared to titanium-coated implants, but HA coated implants did not show any significant differences either in the degree of calcification or the bone-to-implant contact ratio over Ti coated implants. HA coated implants may have complications associated with HA absorption and separation of HA layer from the implant core.

  • PDF

A comparative clinical study on oxidized titanium implants and sandblasted large-grit acid etched implants in soft bone

  • Lee, Jun-Young;Song, Ji-Eun;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • 제39권sup2호
    • /
    • pp.205-212
    • /
    • 2009
  • Purpose: The aim of this retrospective study was to compare the survival rate of oxidized titanium implants and sandblasted large-grit acid etched implants in soft bone. Methods: 201 oxidized titanium implants were inserted in 84 patients between May 1999 and May 2004. 120 sandblasted large-grit acid etched implants were inserted in 74 patients between December 2000 and May 2004. The patients were followed-up 0${\sim}$5 years in ITI group or 0${\sim}$6 years in BRA group, respectively. The following information was collected from the patient records: age, gender, systemic disease, implant type, number, length and diameter of the implants, their location in the jaws, bone quantity, the number of failed implants, the causes of failure, and advanced surgery for bone augmentation. Results: In the oxidized titanium implants, 8 implants showed early failure, and 1 implant showed late failure, respectively. The cumulative survival rate was 95.48%. In the sandblasted large-grit acid etched implants, 1 implant showed late failure and cumulative survival rate was 99.10%. The cumulative survival rate and the survival rates in the case of the advanced procedure during the implant placement were not significantly different in both groups. Conclusions: Oxidized titanium implants and sandblasted large-grit acid etched implants can be used successfully in soft bone regardless of the surgical methods used during the implant placement. (J Korean Acad Periodontol 2009;39:205-212)

Titanium microscrew implant를 이용한 skeletal cortical anchorage (The skeletal cortical anchorage using titanium microscrew implants)

  • 박효상
    • 대한치과교정학회지
    • /
    • 제29권6호
    • /
    • pp.699-706
    • /
    • 1999
  • 고정원의 조절은 교정치료에 있어서 매우 중요한 요소로 이를 보강하기 위한 많은 노력이 있어왔다. 골융합성 임프란트의 경우 확실한 고정원으로서 가능성이 인정되고 있고, 또 임상에서 많이 시도되고 있다. 그러나 임프란트를 매식하기 위해서는 무치악이 존재해야 하거나 하악구치 후방부위에 식립해야 하는 등 장소의 제약이 있고, 값이 비싸며, 골융합을 위하여 기다리는 시간이 필요하다는 등의 단점으로 인하여 보편화되고 있지는 않다. 최근 몇몇 임상가에 의하여 수술용 titanium microscrew 나 miniscrew를 교정치료시의 고정원으로 사용하려는 시도가 있었는데, 이것은 골융합성 임프란트보다 수술이 간단하며, 가격이 저렴하고, 치조골 어느 부위이든지 식립할 수 있다는 장점이 있다. 저자는 titanium microscrew implant를 사용한 skeletal cortical anchorage를 이용하여 통상적인 교정치료 동안 협조도가 고갈된 환자를 치료하였다. 6개월간의 titanium microscrew로 부터 가해진 교정력에 의하여 상악 전치부는 4 mm후방 치체이동과 압하이동을 얻었다. 통상의 교정치료에서 고정원역할을 하는 상악 구치부도 1.5 mm후방이동 되었다. titanium microscrew는 치료기간 동안 움직임없이 잘 유지되었다. 비록 과학적으로 밝혀져야할 임상적인 문제가 있기는 하나, skeletal cortical anchorage는 확실한 고정원으로서의 역할을 할 수 있을 것으로 생각된다.

  • PDF

Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants

  • Choi, Hae Won;Park, Young Seok;Chung, Shin Hye;Jung, Min Ho;Moon, Won;Rhee, Sang Hoon
    • 대한치과교정학회지
    • /
    • 제47권4호
    • /
    • pp.229-237
    • /
    • 2017
  • Objective: The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Methods: Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $40^{\circ}$. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. Results: There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was $56.88{\pm}6.72%$. Conclusions: Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.

안와 파열 골절 치료 시 삽입물 종류에 따른 후유증 비교 (Comparison of Sequelae According to the Types of Implants in Blow-Out Fracture)

  • 김태곤;임종효;이준호;김용하
    • 대한두개안면성형외과학회지
    • /
    • 제10권1호
    • /
    • pp.23-28
    • /
    • 2009
  • Purpose: Blow out fracture can present tenderness, swelling, enophthalmos, extraoccular muscle limitation, paresthesia, diplopia according to severity of injury, so reconstruction of blow out fracture is important. Orbital soft tissue should be in orbit and defected orbital wall should be corrected by autologus tissue or alloplastic implants. Every implants have their merits and faults, every implants are used various. This study was designed to compare the sequelae of blow-out fracture repair using the alloplastic implants: micro-titanium mesh(Micro Dynamic titanium $mesh^{(R)}$, Leibinger, Germany), porous polyethylene ($Medpor^{(R)}$, Porex, USA), absorbable mesh plate(Biosorb $FX^{(R)}$ . Bionx Implants Ltd, Finland). Methods: Between January 2006 and April 2008, 52 patients were included in a retrospective study analysing the outcome of corrected inferior orbital wall fracture with various kind of implants. Implants were inserted through subciliary incision. Twenty patients were operated with micro-titanium mesh, fourteen patients with porous polyethylene and eighteen patients with absorbable mesh plate. In comparative category, enophthalmos, diplopia, range of motion of extraoccular muscle, inferior orbital nerve injury were more on frequently statistically in patients. Results: Fourteen of 18 patients underwent surgical repair to improve diplopia, 11 of 17 patients to improve parasthesia, 11 of 15 patients to improve enophthalmos, 8 of 9 patients to improve extraoccular muscle limitation. Duration of follow-up time ranged from 6 months to 12 months(mean, 7.4 months). There was no statistic difference of sequelae between micro titanium mesh and porous polyethylene and absorbable mesh plate in blowout fracture, inferior wall. Conclusion: There is no difference of sequelae between micro-titanium mesh, porous polyethylene and absorbable mesh plate in blow-out fracture, inferior wall. The other factors such as defect size, location, surgeon's technique, may influence the outcome of blow-out fracture repair.

Skull Reconstruction with Custom Made Three-Dimensional Titanium Implant

  • Cho, Hyung Rok;Roh, Tae Suk;Shim, Kyu Won;Kim, Yong Oock;Lew, Dae Hyun;Yun, In Sik
    • 대한두개안면성형외과학회지
    • /
    • 제16권1호
    • /
    • pp.11-16
    • /
    • 2015
  • Background: Source material used to fill calvarial defects includes autologous bones and synthetic alternatives. While autologous bone is preferable to synthetic material, autologous reconstruction is not always feasible due to defect size, unacceptable donor-site morbidity, and other issues. Today, advanced three-dimensional (3D) printing techniques allow for fabrication of titanium implants customized to the exact need of individual patients with calvarial defects. In this report, we present three cases of calvarial reconstructions using 3D-printed porous titanium implants. Methods: From 2013 through 2014, three calvarial defects were repaired using custom-made 3D porous titanium implants. The defects were due either to traumatic subdural hematoma or to meningioma and were located in parieto-occipital, fronto-temporo-parietal, and parieto-temporal areas. The implants were prepared using individual 3D computed tomography (CT) data, Mimics software, and an electron beam melting machine. For each patient, several designs of the implant were evaluated against 3D-printed skull models. All three cases had a custom-made 3D porous titanium implant laid on the defect and rigid fixation was done with 8 mm screws. Results: The custom-made 3D implants fit each patient's skull defect precisely without any dead space. The operative site healed without any specific complications. Postoperative CTs revealed the implants to be in correct position. Conclusion: An autologous graft is not a feasible option in the reconstruction of large calvarial defects. Ideally, synthetic materials for calvarial reconstruction should be easily applicable, durable, and strong. In these aspects, a 3D titanium implant can be an optimal source material in calvarial reconstruction.

성경 대퇴골에 매식된 Titanium Plasma Spray 및 Hydroxyapatite 피복임프란트 주위의 골치유 양상 (HISTOLOGIC EvALUATION OF BONE HEALING AROUND TITANIUM PLASMA SPRAYED AND HYDROXYAPATITE-COATED IMPLANTS IN DOGS)

  • 허기남;정현주
    • Journal of Periodontal and Implant Science
    • /
    • 제25권2호
    • /
    • pp.418-437
    • /
    • 1995
  • The effect of the hydroxyapatite coatings on Titanium implants has been the subject of recent investigations. So far, the use of HA coating remains substantially controversial.This study was aimed to evaluate histologically the bone healing patterns around titanium plasm sprayed(TPS) amd HA-coated implant after implantation into the femur neck of ten adult dogs. After implantation, animals were sacrificed at the intervals of 2,4,6,8 and 12 weeks.The fluorescent dyes were injected on the postoperative 4th and 12th week into the animals supposed to be killed at the 12th week. The morphology and direction of new bone formation was similar in both TPS and HA-coated implants.There was a tendency toward more bone formation in the cortical bone area than in the cancellous bone area. Histologically,in the interface of the HA-coated implants, bone response and bone maturation was faster, compared to the TPS implants in the 2nd and 4th week. By fluorescent microscopy, new bone formation was active in the 4th week around both implants and was directed from the periosteum overlying cortical bone to the cancellous bone. These results suggest that the bone formation and maturation is faster during the early healing stage in the interface of the HA-coated implant and where the cortical bone quality is poor, HA coated implant is superior to the TPS implant in the early phase of new bone formation.

  • PDF

발치후 즉시 매식한 Nonsubmerged와 Submerged 임플랜트의 변연골 흡수양상에 관한 비교연구 (COMPARATIVE STUDY ON THE MARGINAL BONE LOSS OF IMMEDIATE NONSUBMERGED AND SUBMERGED ENDOSSEOUS DENTAL IMPLANTS PLACED INTO EXTRACTION SOCKETS OF DOGS)

  • 양재호
    • 대한치과보철학회지
    • /
    • 제35권2호
    • /
    • pp.255-264
    • /
    • 1997
  • The conventional osseointegration protocol calls for waiting up to 12 months for ossification of an extraction socket to heal before placing an endosseous implant. In this study, the possibility of placing a pure titanium implant directly into an extraction socket immediately after extraction was investigated. And the marginal bone loss of immediate nonsubmerged and submerged endosseous dental implants placed into extraction sockets was also compared. Pure titanium Nobelpharma Branemark implants and solid screw type ITI implants were placed into premolar extraction sockets of two adult dogs and allowed to heal for a period of 3 months, followed by functional loading of the implant. Radiographic examination was performed before implantation, immediately after implantation and 3, 6, 9, 12 months after implantation. The results obtained were as follows : 1. Immediately placed nonsubmerged ITI implants and submerged Branemark implants showed favorable radiographic osseointegration status and there were minimum marginal bone loss. 2. There were no significant differences in radiographic finding of osseointegration between conventional and immediate implantation. 3. Gingival tissue around implants showed more inflammatory signs than that of adjacent natural teeth. This study suggest that pure titanium Branemark implants and submerged ITI implants have the potential to integrate when placed immediatly after extraction of the teeth and warrants further investigation.

  • PDF