• Title/Summary/Keyword: Titanium grade

Search Result 79, Processing Time 0.026 seconds

THE BOND CHARACTERISTICS OF PORCELAIN FUSED BY TITANIUM SURFACE MODIFICATION (타이타늄의 표면개질에 따른 도재 결합 특성)

  • Choi, Taek-Huw;Park, Sang-Won;Vang, Mong-Sook;Yang, Hong-So;Park, Ha-Ok;Lim, Hyun-Pil;Oh, Gye-Jeong;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Kyung-Ku
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.169-181
    • /
    • 2007
  • Statement of problem: Titanium is well known as a proper metal for the dental restorations, because it has an excellent biocompatibility, resistance to corrosion, and mechanical property. However, adhesion between titanium and dental porcelains is related to the diffusion of oxygen to the reaction layers formed on cast-titanium surfaces during porcelain firing and those oxidized layers make the adhesion difficult to be formed. Many studies using mechanical, chemical and physical methods to enhance the titanium-ceramic adhesion have been actively performed. Purpose: This study meant to comparatively analyse the adhesion characteristics depending on different titanium surface coatings after coating the casts and wrought titanium surfaces with Au and TiN. Material and method: In this study, the titanium specimens (CP-Ti, Grade 2, Kobe still Co. Japan) were categorized into cast and wrought titanium. The wrought titanium was cast by using the MgO-based investment(Selevest CB, Selec). The cast and wrought titanium were treated with Au coating($ParaOne^{(R)}$., Gold Ion Sputter, Model PS-1200) and TiN coating(ATEC system, Korea) and the ultra low fusing dental porcelain was fused and fired onto the samples. Biaxial flection test was done on the fired samples and the porcelain was separated. The adhesion characteristics of porcelain and titanium after firing and the specimen surfaces before and after the porcelain fracture test were observed with SEM. The atomic percent of Si on all sample surfaces was comparatively analysed by EDS. In addition, the constituents of specimen surface layers after the porcelain fracture and the formed compound were evaluated by X-ray diffraction diagnosis. Result: The results of this study were obtained as follows : 1. The surface characteristics of cast and wrought titanium after surface treatment(Au, TiN, $Al_2O_3$ sandblasting) were similar and each cast and wrought titanium showed similar bonding characteristics. 2. Before and after the biaxial flection test, the highest atomic weight change of Si component was found in $Al_2O_3$ sandblasted wrought titanium(28.6at.% $\rightarrow$ 8.3at.%). On the other hand, the least change was seen in Au-Pd-In alloy(24.5at.% $\rightarrow$ 9.1at.%). 3. Much amount of Si components was uniformly distributed in Au and TiN coated titanium, but less amount of Si's was unevenly dispersed on Al2O3 sandblasting surfaces. 4. In X-ray diffraction diagnosis after porcelain debonding, we could see $Au_2Ti$ compound and TiN coating layers on Au and TiN coated surfaces and $TiO_2$, typical oxide of titanium, on all titanium surfaces. 5. Debonding of porcelain on cast and wrought titanium surface after the biaxial flection is considered as a result of adhesion deterioration between coating layers and titanium surfaces. We found that there are both adhesive failure and cohesive failure at the same time. Conclusion: These results showed that the titanium-ceramic adhesion could be improved by coating cast and wrought titanium surfaces with Au and TiN when making porcelain fused to metal crowns. In order to use porcelain fused to titanium clinically, it is considered that coating technique to enhance the bonding strength between coating kKlayers and titanium surfaces should be developed first.

GRAIN SIZE AND TOUGHNESS OF TI-6AL-4V ELECTRON BEAM AND TIG WELD DEPOSITS

  • Kivineva, Esa;Hannerz, Niis-Erik
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.632-638
    • /
    • 2002
  • Electron beam (EB) and Gas tungsten arc (TIG) welds were performed on 12.7 mm thick Ti-6Al-4V plate (ASTM Titanium Grade 5). Charpy-V toughness and hardness, as well as, microstructure of the welds and penetration from the macrostructure were studied. It appears that by EB welding rather smaller $\beta$-grains than with TIG welding can be obtained. Next to the fusion line the $\beta$-grain size in the HAZ was 50 ${\mu}{\textrm}{m}$l while in the weld metal it was 150 ${\mu}{\textrm}{m}$. Charpy-V toughness of the EB weld metal was equal or even better to that of base metal, which shows that the $\alpha$-martensite per se is not particularly brittle if only the grain size is fine enough. This is similar to behavior of low carbon martensite in steel. The grain size was studied with light optical and scanning electron (SEM) microscopes. Thus for products, for products which can be manufactured automatically with very narrow fit, the EB welding of Ti-6Al-4V appears to yield satisfactory toughness without any complex post weld heat treatment. ill this study as in earlier studies the TIG welds gave lower toughness than that of the base material due to the higher heat input and slower cooling as compared to EB welding.

  • PDF

A study on cytotoxicity of Ti-Nb alloys (Ti-Nb계 합금의 세포독성에 관한 연구)

  • Park, Hyo-Byeong
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.89-94
    • /
    • 2003
  • The use of titanium alloys as biomaterials is increasing due to their superior biocompatibility and enhanced corrosion resistance compared to conventional stainless steels and cobalt-based alloys. Ti-6Al-4V ($\alpha+\beta$type) alloy instead of pure titanium ($\alpha$type) is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength and corrosion resistance. It also has similar characteristics to Ti in inducing bony ingrowth. But it has been reported recently that the vanadium element expresses cytotoxicity and carcinogenicity and the aluminium element is related with dementia of Alzheimer type and neurotoxicity. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study. CP-Ti(ASTM grade 2), Ti-3wt.%Nb($\alpha$type), Ti-20wt.%Nb ($\alpha+\beta$type) and Ti-40 wt.%Nb($\beta$type) alloys were melted by vacuum arc furnace. Biocompatibility of Ti-Nb alloys was evaluated by cytotoxicity test. The results can be summarized as follows: 1. For the cytotoxicity test, Ti-Nb alloys showed excellent biocompatibility compared to CP-Ti(ASTM grade 2), 316L STS and Co-Cr alloys.

  • PDF

Comparative study of the shear bond strength of various veneering materials on grade II commercially pure titanium

  • Lee, Eun-Young;Jun, Sul-Gi;Wright, Robert F.;Park, Eun-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.69-75
    • /
    • 2015
  • PURPOSE. To compare the shear bond strength of various veneering materials to grade II commercially pure titanium (CP-Ti). MATERIALS AND METHODS. Thirty specimens of CP-Ti disc with 9 mm diameter and 10 mm height were divided into three experimental groups. Each group was bonded to heat-polymerized acrylic resin (Lucitone 199), porcelain (Triceram), and indirect composite (Sinfony) with 7 mm diameter and 2 mm height. For the control group (n=10), Lucitone 199 were applied on type IV gold alloy castings. All samples were thermocycled for 5000 cycles in $5-55^{\circ}C$ water. The maximum shear bond strength (MPa) was measured with a Universal Testing Machine. After the shear bond strength test, the failure mode was assessed with an optic microscope and a scanning electron microscope. Statistical analysis was carried out with a Kruskal-Wallis Test and Mann-Whitney Test. RESULTS. The mean shear bond strength and standard deviations for experimental groups were as follows: Ti-Lucitone 199 ($12.11{\pm}4.44$ MPa); Ti-Triceram ($11.09{\pm}1.66$ MPa); Ti-Sinfony ($4.32{\pm}0.64$ MPa). All of these experimental groups showed lower shear bond strength than the control group ($16.14{\pm}1.89$ MPa). However, there was no statistically significant difference between the Ti-Lucitone 199 group and the control group, and the Ti-Lucitone 199 group and the Ti-Triceram group. Most of the failure patterns in all experimental groups were adhesive failures. CONCLUSION. The shear bond strength of veneering materials such as heat-polymerized acrylic resin, porcelain, and indirect composite to CP-Ti was compatible to that of heatpolymerized acrylic resin to cast gold alloy.

Electron beam weldability of titanium alloy (타이타늄합금의 전자빔용접성)

  • Lee, Chae-Hun;Yun, Jong-Won;Park, No-Gwang
    • Laser Solutions
    • /
    • v.10 no.4
    • /
    • pp.13-17
    • /
    • 2007
  • Electron beam weldability was investigated for 1mm thick cold rolled sheets of commercially pure grade titanium and Ti-6Al-4V alloy. Accelerating voltage of 40kV, beam current of 6mA, and weld speed of 0.8m/min was used and focal position of focused electron beam was just on the surface of workpiece. Microstructure of weld metal, the heat affected zone and base metal was observed using optical microscope. Vickers hardness was measured across the welds and the transverse tensile test was carried out. Hydroformability test was also carried out for the butt welded coupons of commercially pure grade titanium. For the electron beam welded C P Ti, the average grain size was equiaxed $\alpha(15{\sim}25{\mu}m)$ for base metal, coarse equiaxed $\alpha(80{\sim}200{\mu}m)$ for weld metal and annealed and enlarged grain($40{\sim}120{\mu}m$) for the HAZ. The vickers hardness of C P Ti was $180{\sim}200Hv$ for base metal, and $160{\sim}180Hv$ for the weld metal and the HAZ. For the electron beam welded Ti-6Al-4V alloy, the vickers hardness was 360Hv for the base metal, abd $400{\sim}425Hv$ for the weld metal and the HAZ. All the failure occurred at the base metal, when the transverse weld tensile test was carried out for both electron beam welded C P Ti and Ti-6Al-4V alloy. The formability of electron beam welded C P Ti was decreased compared with that of C P Ti base alloy.

  • PDF

Inhibition of Osteoclast differentiation based on precipitation time of titanium surfaces immersed in modified simulated body fluid (Modified simulated body fluid에 침전한 티타늄 표면에서 침전 기간에 따라 나타나는 파골 세포의 분화억제 양상)

  • Chang, Hyun-min;Heo, Seong-Joo;Kim, Seong-Kyun;Koak, Jai-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.2
    • /
    • pp.142-149
    • /
    • 2019
  • Purpose: The purpose of this study is to investigate the changes of osteoclast differentiation inhibition according to the period of precipitation when titanium disks were immersed in Modified simulated body fluid (mSBF). Materials and methods: Titanium alloy (Ti grade III) disks with machined surfaces and anodized surfaces were immersed in distilled water and mSBF, respectively. The immersion periods were 7 days, 14 days, 21 days and 28 days, and the control group was immersed in distilled water for each period. RAW 264.7 cells capable of differentiating into osteoclasts were used to measure the number of adherent cells, the measurement of TRAP activity, and the expression pattern of NFATc1 by western blotting. Results: The degree of inhibition of osteoclast differentiation was found to be statistically significant when the disks were immersed in mSBF for more than 14 days on both machined surfaces and anodized surfaces. There was no correlation between immersion time and cell attachment. When the disks were immersed for more than 14 days, TRAP activity was decreased and NFATc1 expression was inhibited. Futhermore, the decrease in TRAP activity and the inhibition of NFATc1 expression remained unchanged. Conclusion: Immersion of titanium disks in mSBF for more than 14 days can prevent RAW 264.7 cells from differentiating into osteoclasts. Inhibition activity does not change even if the immersion period is for more than 14 days.

The study on the shear bond strength of resin and porcelain to Titanium (티타늄에 대한 레진과 도재의 결합 강도에 관한 연구)

  • Park, Ji-Man;Kim, Yeong-Soon;Jun, Sul-Gi;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Statement of problem: Recently, titanium has become popular as superstructure material in implant dentistry because titanium superstructure can be easily milled by means of computer-aided design and manufacture (CAD/CAM) technique. But retention form such as nail head or bead cannot be cut as a result of technical limitation of CAD/CAM milling and bond strength between titanium and porcelain is not as strong as that of conventional gold or metal alloy. Purpose: The objective of this study was to evaluate the shear bond strength of three different materials: heat curing resin, composite resin, porcelain which were bonded to grade II commercially pure Titanium (CP-Ti). Material and methods: Thirty seven CP-Ti discs with 9 mm diameter, 10 mm height were divided into three groups and were bonded with heat curing resin (Lucitone 199), indirect composite resin (Sinfony), and porcelain (Triceram) which were mounted in a former with 7 mm diameter and 1 mm height. Samples were thermocycled for 1000 cycles at between $5-55^{\circ}C$. Shear bond strength (MPa) was measured with Instron Universal Testing Machine with cross head speed of 1 mm/min. The failure pattern was observed at the fractured surface and divided into adhesive, cohesive, and combination failure. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: Lucitone 199 ($17.82{\pm}5.13\;MPa$) showed the highest shear bond strength, followed by Triceram ($12.97{\pm}2.11\;MPa$), and Sinfony ($6.00{\pm}1.31\;MPa$). Most of the failure patterns in Lucitone 199 and Sinfony group were adhesive failure, whereas those in Triceram group were combination failure. Conclusion: Heat curing resin formed the strongest bond to titanium which is used as a CAD/CAM milling block. But the bond strength is still low compared with the bond utilizing mechanical interlocking and there are many adhesive failures which suggest that more studies to enhance bond strength are needed.

Effects of GTAW Pulse Condition on Penetration, Discoloration and Bending Property for Titanium Tube (GTAW 펄스 용접 조건에 따른 타이타늄 정밀관의 용입, 변색 및 굽힘특성)

  • Min, Seonghwan;An, Sungyong;Park, Jitae;Park, Youngdo;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.47-55
    • /
    • 2014
  • The purpose of the study is to produce a mechanically improved weld and minimum variation of color through comparing unpulsed and pulsed GTAW (Gas Tungsten Arc Welding) for pure titanium (CP grade7) tube. Pulsed GTAW using 60 A peak current and 20 A background current (1:9) achieved the wider window of welding conditions having part and full penetration without burn-through than the case of unpulsed GTAW. Moreover, the pulsed welding reduced a discoloration on the back bead of the weld and the size of microstructures (basket weave and serrated ${\alpha}$). That is because the pulsed welding has it's a low heat input and severe weld flow induced from electric current variation. Furthermore, the pulsed welding improved the bending property of the welded Ti tube. The enhanced bending property for the pulsed GTAW was due to the insignificant discoloration on the weld surface with maintaining the metal polish.

스파타링에 의한 탄화티탄 피복에 관한 연구

  • 김병옥;방병옥;윤병하
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.1
    • /
    • pp.16-26
    • /
    • 1990
  • The standrd electrolyte for the electrodeposition of chromium were preparwith reagent grade chromic acid(200g/L), sulfuric acid(pH=1.8)and oxalic acalic acid(640g/L)as additive. Carbon content in chromium plating varied about2.0-3.8 wt% with current density and temperatures of the bath. The hardeness of chromium platings incresed with increasing the annealing temperatures and showed maximum value of about Hv 1700 after annealing at$ 700^{\circ}C$for 60min. But, decreased it as annealing at above $700^{\circ}C$. The reason for varing thee hardness of chromium codeposited with carbon gradually foumed chromium carbide(Cr7C3), but that changed to Cr23C6 as annealing temperature at above $^700{\circ}C$. The X-ray diffraction pattern indicated that chromium carbides, such as Cr7C3 or Cr3C2, formed at formed at above $300^{\circ}C$. titanium coating sputtered on the on surface of chromium plating had performed and determined the hardness after annealing at 500, 600, $700^{\circ}C$ for 60min. the maximum hardeness was about Hv 2400 as annealing at $700^{\circ}C$. The titanium carbide formed in layer was identified by X-ray diffraction. It was confirmed that chromium and titanium carbide has effect of increasing the hardness.

  • PDF

The effect of nano-titanium dioxide on the self-cleaning properties of TiO2-PP composite fibers

  • Panutumrong, Praripatsaya;Metanawin, Siripan;Metanawin, Tanapak
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2015
  • This study aims to synthesis the self-cleaning fibers. The nano-titanium dioxide ($TiO_2$) were blend with the polypropylene (grade 561R) at 1wt%, 3wt%, 5wt%, 10wt%, 15wt% and 20wt%. The $TiO_2$-fibers were obtained from single screw extruder. The mechanical, thermal, rheology and self-cleaning properties were also investigated. The results showed that the tensile strength of the $nTiO_2$-PP fibers decreased with increasing of the amount of $TiO_2$. The presents of the $TiO_2$ in the PP fibers significantly showed the improving of the self-cleaning properties under sunlight and 20 watt of UV radiation. The $TiO_2$-PP fibers in presents of $TiO_2$ 20wt% showed the best results of self-cleaning under 5 hours of the sunlight which the similar results were found under 5 hours of 20 watts of UV radiation.