• 제목/요약/키워드: Titanium film

검색결과 382건 처리시간 0.022초

A Method for Real Time Monitoring of Oxide Thickness in Plasma Electrolytic Oxidation of Titanium

  • Yoo, Kwon-Jong;Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.8-11
    • /
    • 2010
  • During PEO (plasma-electrolytic-oxidation) treatment of titanium, the relationship between the thickness of oxide film and the measured electrical information was investigated. A simple real time monitoring method based on the electrical information being gathered during PEO treatment is proposed. The proposed method utilizes the current flowing from a high frequency voltage source to calculate the resistance of an oxide film, which is converted into the thickness of an oxide film. This monitoring method can be implemented in PEO system in which an oxide film is grown by constant or pulsed voltage/current sources.

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • 제6권6호
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.

HYDROXYAPATITE GRANULE IMPLANTED Ti-ALLOY

  • Nonami, Toru;Taoda, Hiroshi;Kamiya, Akira;Naganuma, Katsuyoshi;Sonoda, Tsutomu;Kameyama, Tetsuya
    • 한국표면공학회지
    • /
    • 제32권3호
    • /
    • pp.356-359
    • /
    • 1999
  • To obtain a biomaterial that has both biological affinity and high mechanical strength, hydroxyapatite granules were implanted into the surface of pure titanium film coated titanium alloy. The film was coated by reactive DC sputtering method on the alloy substrate. Hydroxyapatite granules (32- $38\mu\textrm{m}$ in diameter)were spread over titanium alloy substrate and pressed to implant the granules in the substrate. They can be implanted into substrate under 17MPa at $800^{\circ}C$ for 10minutes. The only tops of the granules were exposed and they were firmly stuck in substrate. The hydroxyapatite implanted titanium alloy composites were expected to be useful for biomaterials as artificial bones and dental roots.

  • PDF

Fabrication and Characterization of Sol-Gel Ternary Titanium Silicate Waveguides

  • Junmo Koo;Han, Sang-Soo;Bae, Byeong-Soo
    • The Korean Journal of Ceramics
    • /
    • 제2권2호
    • /
    • pp.89-94
    • /
    • 1996
  • Aluminum and zinc titanium silicate sol-gel films were fabricated for application of waveguide and the effect of additions of ZnO and $Al_2O_3$ to binary titanium silicate films was investigated. During firing, the films are densified as they shrunk and their refractive index increases in the range of 1.58-1.83 depending on the film composition. The attenuation of the waveguides is not sensitive to changes in composition except for zinc titanium silicate waveguides which have substantially higher attenuation. However, the increase in the attenuation with aging of the waveguides depend upon the composition of waveuides. The addition $Al_2O_3$ or the reduced $SiO_2$ content in the composition appears to slow the deterioration of the waveguides due to the formation of more stable bonds and increased acidity on the film surface. Also, the wavelength dependence of the attenuation of the waveguides varies with composition. The attenuation of the waveguides except for the $65SiO_2{\cdot}35TiO_2$ composition are not Rayleigh scatter limited, suggesting the absorption loss of the waveguides due to the effects of residual carbon and structural defects in the films.

  • PDF

내식성 향상을 위한 기능성 타이타늄 표면 개질 (Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance)

  • 박영주;정찬영
    • Corrosion Science and Technology
    • /
    • 제20권5호
    • /
    • pp.256-265
    • /
    • 2021
  • Titanium is applied in various industries due to its valuable properties and abundant reserves. Generally, if a highly uniform oxide structure and a high-density oxide film is formed on the surface through anodization treatment, the utility value such as color appearance and corrosion inhibition efficiency is further increased. The objective of this study was to determine improvement of water-repellent property by controlling titanium oxide parameters such as pore size and inter-pore distance to improve corrosion resistance. Oxide film structures of different shapes were prepared by controlling the anodization processing time and voltage. These oxide structures were then analyzed using a Field Emission Scanning Electron Microscope (FE-SEM). Afterwards, a Self-Assembled Monolayer (SAM) coating was performed for the oxide structure. The contact angle was measured to determine the relationship between the shape of the oxide film and the water-repellency. The smaller the solid fraction of the surface, the higher the water-repellent effect. The surface with excellent hydrophobic properties showed improved corrosion resistance. Such water-repellent surface has various applications. It is not only useful for corrosion prevention, but also useful for self-cleaning. In addition, a hydrophobic titanium may open up a new world of biomaterials to remove bacteria from the surface.

Low Temperature Synthesis and Characterization of Sol-gel TiO2 Layers

  • Jin, Sook-Young;Reddy, A.S.;Park, Jong-Hyurk;Park, Jeong-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.353-353
    • /
    • 2011
  • Titanium dioxide is a suitable material for industrial use at present and in the future because titanium dioxide has efficient photoactivity, good stability and low cost [1]. Among the three phases (anatase, rutile, brookite) of titanium dioxide, the anatase form is particularly photocatalytically active under ultraviolet (UV) light. In fabrication of photocatalytic devices based on catalytic nanodiodes [2], it is challenging to obtain a photocatalytically active TiO2 thin film that can be prepared at low temperature (< 200$^{\circ}C$). Here, we present the synthesis of a titanium dioxide film using TiO2 nanoparticles and sol-gel methods. Titanium tetra-isopropoxide was used as the precursor and alcohol as the solvent. Titanium dioxide thin films were made using spin coating. The change of atomic structure was monitored after heating the thin film at 200$^{\circ}C$ and at 350$^{\circ}C$. The prepared samples have been characterized by X-ray diffraction (XRD), scanning electron microcopy, X-ray photoelectron spectroscopy, transmission electron microscopy, ultraviolet-visible spectroscopy (UV-vis), and ellipsometry. XRD spectra show an anatase phase at low temperature, 200$^{\circ}C$. UV-vis confirms the anatase phase band gap energy (3.2 eV) when using the photocatalyst. TEM images reveal crystallization of the titanium dioxide at 200$^{\circ}C$. We will discuss the switching behavior of the Pt /sol-gel TiO2 /Pt layers that can be a new type of resistive random-access memory.

  • PDF

치과용 임플란트 나사의 풀림에 미치는 표면코팅 효과 (EFFECTS OF SURFACE COATING ON THE SCREW RELEASE OF DENTAL IMPLANT SCREW)

  • 구철인;정재헌;최한철
    • 대한치과보철학회지
    • /
    • 제42권2호
    • /
    • pp.210-225
    • /
    • 2004
  • Statement of problem: Implant screw loosening has been remained problem in restorative practices. Surface treatment of screw plays a role of preventing screw from loosening in implant screw mechanism. Purpose : The purpose of this study was to investigate surface characteristics of TiN and ZrN film ion plated screw with titanium and gold alloy screw and to evaluate wear resistance, surface roughness, and film adhesion on screw surface using various instruments. Material and methods : GoldTite screws and titanium screws provided by 3i (Implant Innovation, USA) and TorqTite screws or titanium screws by Steri-Oss (Nobel Biocare, USA) and gold screws and titanium screws by AVANA (Osstem Implant, korea) were selected. Ion plating which is much superior to other surface modification techniques was carried out for gold screws and titanium screws using Ti and Zr coating materials with nitrogen gas. Ion nitrided surface of each abutment screw was observed with field emission scanning electron microscopy (FE-SEM, micro-diamond scratch tester, vickers hardness tester, and surface roughness tester. Results : 1) The surface of gold screw and GoldTite is more smooth than ones of other kinds of non coated screw. 2) The ZrN and TiN coated surface is the more smooth than ones of other kinds of screw. 3) The hardness of TiN and ZrN coated surface showed higher than that of non coated surface. 4) The TiN coated titanium screw and ZrN coated gold screw have a good wear resistance and adhesion on the surface. 5) The surface of ZrN coated screw showed low surface roughness compared with the surface of TiN coated screw. Conclusion : It is considered that the TiN and ZrN coated screw which would prevent a screw from loosening can be applicable to implant system and confirmed that TiN and ZrN film act as lubricant on surface of screw due to decrease of friction for recycled tightening and loosening.

티타늄 박막을 이용한 염료감응형 태양전지 모듈 특성에 관한 연구 (A Study on the Characteristics of Dye-sensitized Solar Cell Module Using Titanium Thin Film)

  • 오병윤;김필중
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.69-75
    • /
    • 2021
  • 본 연구에서는 티타늄(Ti) 금속 박막을 사용해서 값비싼 산화주석(FTO) 전극을 대체된 염료감응형 태양전지(DSSC)의 제작 방법과 전기적 특성에 대해서 고찰하였다. Ti 박막의 증착 시간을 조절하여 박막의 두께를 변화시켰으며, Ti 박막의 두께가 두꺼워지면서 표면저항은 감소하였다. 대략 190nm 두께에서 FTO 박막의 표면저항과 비슷해짐을 알 수 있었으며, 250nm 두께에서 DSSC의 에너지 변환효율 4.24%로 가장 높았다. 더 나아가 DSSC 모듈을 제작해 평가함으로써 상용화의 가능성을 확인하였다.