• 제목/요약/키워드: Titanium coating

검색결과 345건 처리시간 0.027초

Investigation of mechanical surface treatment effect on the properties of titanium thin film

  • Ehsan Bazzaz;Abolfazl Darvizeh;Majid Alitavoli;Mehdi Yarmohammad Tooski
    • Advances in nano research
    • /
    • 제17권1호
    • /
    • pp.33-49
    • /
    • 2024
  • Using the mechanical treatments for mechanical properties improvement was rarely in the development scope before. This research approves through analytical ways that surface impacts can improve the quality of the surface significantly. This fact is approved for deposited titanium on silicone substrate. The new algorithm called minimum resultant error method (MREM) which is a direct combination of nanoindentation, FEM and dimensional analysis through a reverse method is utilized to extract the mechanical characteristics of the coating surface before and after impact. This method is extended to the time dependent behavior of the material to obtain strain rate coefficient. To implement this new approach, a new analysis technic is developed to define the residual stress field caused by surface impact as initial condition for nanoindentation. Analyzing the model in micro and macro scale at the same time was one of the main resolved challenges in this study. The result was obtaining of the constants of Johnson-Cook constitutive equation. Comparing the characteristics of the coating surface before and after impact shows high improvement in yield stress (34%), Elastic modulus (7.75%) and strain hardening coefficient (2.8%). The main achievement is that the strength improvement in titanium thin layer is much higher than bulk titanium. The yield strength shows 41.7% improvement for coated titanium comparing with 24% for bulk material. The rate of enhancement is about 6 times when it comes to the Young's modulus.

A STUDY ON MECHANICAL PROPERTIES OF TiN, ZrN AND WC COATED FILM ON THE TITANIUM ALLOY SURFACE

  • Oh, Dong-Joon;Kim, Hee-Jung;Chung, Chae-Heon
    • 대한치과보철학회지
    • /
    • 제44권6호
    • /
    • pp.740-750
    • /
    • 2006
  • Statement of problems. In an attempt to reduce screw loosening, dry lubricant coatings such as pure gold or tefron have been applied to the abutment screw. However, under repeated tightening and loosening procedures, low wear resistance and adhesion strength of coating material produced free particles on the surface of abutment screw and increased frictional resistance resulting in screw tightening problems. Purpose. The aim of this study was to compare friction coefficient, adhesion strength, vickers hardness and evaluate coating surface of titanium alloy specimens coated with TiN(titanium nitride), ZrN(zirconium nitride) and WC(tungsten carbide). Material and method. Titanium alloy(Ti-6Al-4V) discs of 12mm in diameter and 1mm in thickness divided into 4 groups. TiN, ZrN and WC was coated for the specimens of 3 groups respectively, and those of 1 group were not coated. Each group was made up of 4 specimens. In this study, sputtering method was used among the PVD(Physical Vapor Deposition) techniques available for TiN, ZrN and WC coatings. Friction coefficient, adhesion strength, vickers hardness and coating surface of 4 groups were measured. Results. 1. For all three coating conditions, friction coefficient was significantly decreased. Especially, ZrN coated surface showed the lowest value. $TiN(0.39{\pm}0.02)$, $ZrN(0.24{\pm}0.01)$, $WC(0.31{\pm}0.03)$. 2. TiN coating showed the highest adhesion strength, however ZrN coating had the lowest value. $TiN(25.3N{\pm}1.6)$, $ZrN(14.8N{\pm}0.6)$, $ WC(18.4N{\pm}0.7)$. 3. Vickers hardness of all three coatings was remarkably increased as compared with that of none coated specimen. TiN coating had the highest Vickers hardness, however WC coating showed the lowest value. $TiN(1865.2{\pm}33.8)$, $ZrN(1814.4{\pm}18.6)$, $WC(1008.5{\pm}35.9)$. 4. The ZrN or WC coated specimen showed a homogeneous and smooth surface, however the rough surface with defects was observed for TiN coating. Conclusions. When TiN, ZrN and WC coating applied to the abutment screw, frictional resistance would be reduced, as a result, the greater preload and prevention of the screw loosening could be expected.

티타늄 용탕의 산화칼슘 및 흑연과의 반응 및 기포 결함의 형성에 미치는 압력의 영향 (The Reactions of the Ti Melt with CaO and Graphite and the Effect of Pressure on the Formation of Gas Porosity)

  • 배창근;권해욱
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.247-253
    • /
    • 2000
  • Titanium was melted in the CaO-coated alumina crucible and the reaction between the melt and the coating layer was negligible. The volume fraction of the gas porosity was decreased with increasing pressure and the sound bar castings with no porosity was obtained under the Ar atmosphere of the pressure of $300kN/mm^2$. The surface of the casting obtained from CaO-coated graphite mold was slightly rougher than that from graphite without coating. The reaction product of titanium melt with the layer of CaO was mainly titanium oxide and that with graphite crucible was titanium cabide with small amount of titanium nitride.

  • PDF

Characteristics of tungsten coated graphite using vacuum plasma spraying method

  • Lim, Hyeonmi;Kang, Boram;Kim, Hoseok;Hong, Bong Guen
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.200.1-200.1
    • /
    • 2016
  • Tungsten coatings on the graphite (CX-2320) were successfully deposited using the vacuum plasma spraying (VPS) method. An optimum coating procedure was developed and coating thicknesses of $409{\mu}m$ (without an interlayer) and $378{\mu}m$ (with an interlayer) were obtained with no cracks and no signs of delamination. The mechanical characteristics and microstructure of the tungsten coating layers were investigated using a Vickers hardness tester, FE-SEM, EDS, and XRD. The effect of a titanium interlayer on the properties of the tungsten coating was investigated. It was shown that the titanium interlayer prevented the diffusion of carbon to the tungsten layer, thereby suppressing the formation of tungsten carbide. Vickers hardness data yielded values that were 62.5 ~ 80.46% of those for bulk tungsten, indicating that tungsten coatings on graphite can be utilized as a plasma-facing material. High heat flux tests were performed by using thermal plasma with a maximum flux of $10MW/^2$. Vickers hardness after the heat flux test is performed to see a change in the mechanical properties. The formationof a tungsten carbide and the effect of the titanium interlayer for the diffusion barrier are investigated by using energy dispersion spectroscopy (EDS).

  • PDF

Ti-naphthenate의 코팅-열분해에 의한$TiO_2$ 박막의 제조 (Preparation of $TiO_2$ thin films by coating-pyrolysis process of Ti-naphthenate)

  • 김진영;김승원;장우석;김현태;최상원
    • 한국결정성장학회지
    • /
    • 제12권1호
    • /
    • pp.7-10
    • /
    • 2002
  • $TiO_2$ 박막을 금속유기화합물인 Titanium-naphthenate의 코팅-열분해법으로 제조하였다. 출발물질은 Ti-naphthenate를 toluene에 희석한 용액을 사용하였으며 기판은 slide glass를 사용하였다 Titanium-naphthenate 용액을 spin-coating법으로 기판에 코팅하고 $450^{\circ}C$에서 열터리하여 $TiO_2$ 박막을 제조하였다 제조한 박막의 특성을 UV/Vis, XRD 및 SEM 등으로 박막의 투과율, 굴절률, 결정상 및 표면 형상을 분석하였다. Slide glass 위에 제조한 TiO$_2$ 박막은 투과율은 70~90%이며 420nm에서의 굴절율은 2.7이었다. $TiO_2$박막은 anatase상을 나타내었고 실타래 형상의 주름을 가진 표면을 나타내었다

도재 소부용 비귀금속 합금과 티타늄에 적용한 Gold Bonding Agent의 전자현미경적 평가 (SEM/EDS Evaluation of Gold Bonding Agent Applied on Non-precious Alloys and Cast CP-Ti)

  • 이정환;안재석
    • 치위생과학회지
    • /
    • 제9권2호
    • /
    • pp.153-160
    • /
    • 2009
  • 본 연구는 금속-도재 수복물 제작에 사용되는 Ni-Cr alloy와 Co-Cr alloy, 그리고 티타늄에 gold bonding agent를 도포하여 Au coating 층을 형성하였다. 각 시편의 절단면을 전자현미경으로 Au coating 층과 porcelain bonder, 그리고 불투명 도재간의 결합을 관찰하였고, 각 계면의 상태를 SEM/EDS 방법으로 조사하였다. 실험에서 사용된 재료와 방법의 범위 내에서 다음과 같은 결론을 얻었다. 1. Gold bonding agent를 사용하여 형성한 Au coating 층은 미세다공성을 가진 구조로 판단되었다. 2. Au coating 층과 porcelain bonder 그리고 불투명 도재간의 결합은 잘 일어나 보였다. 3. Au coating 층은 도재 소성과정에서 발생하는 산화층의 확산을 제한하는 것으로 관찰되었다.

  • PDF

티타늄 및 구리증착이 알루미나 곡강도에 미치는 영향 (The Effect of Titanium and Copper Coatings on the Modulus of Rupture of Alumina)

  • 황하룡;이임렬
    • 한국표면공학회지
    • /
    • 제27권1호
    • /
    • pp.29-35
    • /
    • 1994
  • The effects of coating of 3$\mu\textrm{m}$ thickness on the mechanical property of alumina after heat treatment at 100$0^{\circ}C$ for 30minutes under $10^{-6}$torr vacuum was quantified in terms of modulus of rupture(MOR) using Weibull plot. While the copper coating did not change MOR of alumina due to the nonwetting behavior of Cu on $Al_2O_3$, the reactive titanium metal coating caused a noticeable 29% reduction in averaged MOr strength. This was related with the combined effects of microcracks in coating formed during heat treatment and good bonding character between Ti and $Al_2O_3$. The effect of cosputtering of Ti and Cu, bilayer coatings of Cu/Ti and Ti/Cu were also investigated. It was found that Ti, cosputtered, Cu/ti and Ti/Cu coatings reduced MOR strength of alumina in the order listed. This was correlated with the amount of Ti at coating/alumina inter-face associated with a coated layer or segregation of Ti during heat treatment.

  • PDF

코팅 방법에 따른 SnO2/Ti 전극의 제조 및 전기화학적 특성 (Preparation and Electrochemical Characterization of SnO2/Ti Electrode by Coating Method)

  • 김한주;손원근;홍지숙;김태일;박수길
    • 전기화학회지
    • /
    • 제9권2호
    • /
    • pp.59-63
    • /
    • 2006
  • 전해코팅 법과 dip-coating 법을 이용해 산화주석(IV)을 티타늄 지지체에 코팅하여, 코팅 방법에 따른 코팅 전극의 물성과 전기화학적 특성에 대해여 연구하였다. HCl 로 전극 에칭 후, nitrate 용액에 $SnCl_2{\cdot}2H_2O$을 용해시켜 pulse technique를 이용하여 전해코팅 하였으며, dip-coating 법 또한 $SnCl_2{\cdot}2H_2O$를 사용하여 1:1V% HCl 용액에 용해시켜 코팅 소결 후 산화주석(IV)코팅 전극을 제작하였다. 두 가지 코팅 방법을 통해 제작된 산화주석(IV)코팅 전극은 전극의 물성을 비교하기 위해 x-ray diffraction (XRD), scanning election microscopy (SEM)를 관찰해보았고, 전기화학적 특성을 평가하기 위해 cyclic voltammetry (CV)를 측정하여 전위창을 비교해 보았다.

Evaluation of Osseointegration around Tibial Implants in Rats by Ibandronate-Treated Nanotubular Ti-32Nb-5Zr Alloy

  • Nepal, Manoj;Li, Liang;Bae, Tae Sung;Kim, Byung Il;Soh, Yunjo
    • Biomolecules & Therapeutics
    • /
    • 제22권6호
    • /
    • pp.563-569
    • /
    • 2014
  • Materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. This study was designed to evaluate bone response to titanium alloy containing Ti-32Nb-5Zr with nanostructure, anodic oxidation, heat treatment, and ibandronate coating. Rats were randomly assigned to two groups for implantation of titanium alloy (untreated) as the control group and titanium alloy group coated with ibandronate as the experimental group. Then, the implants were inserted in both tibiae of the rats for four weeks. After implantation, bone implant interface, trabecular microstructure, mechanical fixation was evaluated by histology, micro-computed tomography (${\mu}CT$) and the push-out test, respectively. We found that the anodized, heat-treated and ibandronate-coated titanium alloy triggered pronounced bone implant integration and early bone formation. Ibandronate-coated implants showed elevated values for removal torque and a higher level of BV/TV, trabecular thickness and separation upon analysis with ${\mu}CT$ and mechanical testing. Similarly, higher bone contact and a larger percentage bone area were observed via histology compared to untreated alloy. Furthermore, well coating of ibandronate with alloy was observed by vitro releasing experiment. Our study provided evidences that the coating of bisphosphonate onto the anodized and heat-treated nanostructure of titanium alloy had a positive effect on implant fixation.

Collagen Formation and Adhesion of Human Gingival Fibroblasts on the IBAD Ca-P Coating on Ti

  • B. H. Zhao;F. Z. Cui;Lee, I-S.;W. Bai;H. L. Feng
    • 한국진공학회지
    • /
    • 제12권S1호
    • /
    • pp.10-14
    • /
    • 2003
  • Coatings of hydroxyapatite (HA) and tricalcium phosphate/HA (TCP/HA) on titanium were fabricated by ion beam assisted deposition (IBAD). Significant effect of the Ca-P coatings on human Gingival Fibroblasts (HGFs) attachment and formation of type I collagen were found by using immunofluorescence microscope. TCP/HA and HA coatings exerted more HGFs attachment and collagen I formation. Comparing with HA coating, TCP/HA coating exhibited better responses during the late period of the tests. This investigation indicated that this surface modification method may enhance the biological seal at the cervical level of the titanium dental implants.