• Title/Summary/Keyword: Titanium Tube

Search Result 61, Processing Time 0.025 seconds

A Study of The Effect of Corrosion on Heat Transfer in a Heat Exchanger (열교환기에서 부식이 열전달에 미치는 영향에 관한 연구)

  • Kwon, Hyun-Min;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.227-232
    • /
    • 2019
  • Heat pump systems based on ocean thermal energy conversion (OTEC) systems use the temperature difference between deep ocean water and surface ocean water to operate. However, they may have heat transfer degradation due to corrosion on the heat exchanger surface due to the salinity of sea water. This study presents experimental results for the heat transfer decrease of corroded metal tubes with respect to corrosion time. In order to replace high-priced titanium, electro-deposition (ED) coating was performed on aluminum tubes. Aluminum tubes with ED coating thicknesses of 10, 15, and $20{\mu}m$ were tested for double-tube heat exchangers after performing accelerated corrosion for 6, 12, and 18 weeks. The effects of the coating thickness and the corrosion time on the heat transfer degradation were investigated. From the results, the aluminum tube with an ED coating of $20{\mu}m$ thickness can be suggested as a candidate for replacing titanium tubes.

Development of Remote Reld Testing Technique for Moisture Separator & Reheater Tubes in Nuclear Power Plants (원자력발전소 습분분리재열기 튜브 원격장검사 기술 개발)

  • Nam, Min-Woo;Lee, Hee-Jong;Kim, Cheol-Gi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.339-345
    • /
    • 2008
  • The heat exchanger tube in nuclear power plants is mainly fabricated from nonferromagnetic material such as a copper, titanium, and inconel alloy, but the moisture separator & reheater tube in the turbine system is fabricated from ferromagnetic material such as a carbon steel or ferrite stainless steel which has a good mechanical properties in harsh environments of high pressure and temperature. Especially, the moisture separator & reheater tubes, which use steam as a heat transfer media, typically employ a tubing with integral fins to furnish higher heat transfer rates. The ferromagnetic tube typically shows superior properties in high pressure and temperature environments than a nonferromagnetic material, but can make a trouble during the normal operation of power plants because the ferrous tube has service-induced damage forms including a steam cutting, erosion, mechanical wear, stress corrosion cracking, etc. Therefore, nondestructive examination is periodically performed to evaluate the tube integrity. Now, the remote field testing(RFT) technique is one of the solution for examination of ferromagnetic tube because the conventional eddy current technique typically can not be applied to ferromagnetic tube such as a ferrite stainless steel due to the high electrical permeability of ferrous tube. In this study, we have designed RFT probes, calibration standards, artificial flaw specimen, and probe pusher-puller necessary for field application, and have successfully carry out RFT examination of the moisture separator & reheater tube of nuclear power plants.

Mechanical Properties of Electro-Discharge-Sintered Porous Titanium Implants (전기방전소결에 의해 제조된 다공성 Titanium 임플란트의 기계적 특성)

  • Hyun, C.Y.;Huh, J.K.;Lee, W.H.
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.173-177
    • /
    • 2006
  • Porous surfaced Ti implant compacts were fabricated by electro-discharging-sintering (EDS) of atomized spherical Ti powders. Powders of $50-100{\mu}m$ in diameter were vibratarily settled into a quarts tube and subject to a high voltage and high density current pulse in Ar atmosphere. Single pulse of 0.7 to 2.0 kJ/0.7 gpowder, from 150, 300, and $450{\mu}F$ capacitors was applied in less than $400{\mu}sec$ to produce twelve different porous-surfaced Ti implant compacts. The solid core formed in the center of the compact shows similar microstructure of cp Ti which was annealed and quenched in water. Hardness value at the solid core was much higher than that at the particle interface and particles in the porous layer, which can be attributed to both heat treatment and work hardening effects induced by EDS. Compression tests were made to evaluate the mechanical properties of the EDS compacts. The compressive yield strength was in a range of 12 to 304MPa which significantly depends on input energy. Selected porous-surfaced Ti-6Al-4V dental implant compacts with a solid core have much higher compressive strengths compared to the human teeth and sintered Ti dental implants fabricated by conventional sintering process.

Photo Catalytic Activity of CNT-TiO2 Nano Composite in Degrading Anionic and Cationic Dyes

  • Kim, Sang-Jin;Im, Ji-Sun;Kang, Phil-Hyun;Kim, Tae-Jin;Lee, Young-Seak
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.294-297
    • /
    • 2008
  • A CNT-$TiO_2$ nano composite was prepared from titanium chloride ($TiCl_4$) via sol-gel process using multi walled carbon nano tube (MWCNT) followed by calcination at $450^{\circ}C$. Spectral analysis revealed that the formed $TiO_2$ resided on the carbon in anatase form. The effect of adsorption was investigated using aqueous solution of methylene blue and procion blue dye. The photochemical reaction of CNT-$TiO_2$ composite in aqueous suspensions was studied under UV illumination in batch process. The reaction was investigated by monitoring the discoloration of the dyes employing UV-Visible spectro-photometeric technique as a function of irradiation time. The catalyst composites were found to be efficient for the photodegradation of the dye.

Evaluation of Welding Soundness of Titanium-Copper Explosive-Bonded Dissimilar Clad Plate by TIG Welding (타이타늄-구리 폭발압접 이종 클래드 판재의 TIG 용접 건전성 평가)

  • Jo, Pyeong-Seok;Youn, Chang-Seok;Hwang, Hyo-Woon;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.2
    • /
    • pp.66-74
    • /
    • 2021
  • Cladding material, which can selectively obtain excellent properties of different metals, is a composite material that combines two or more types of dissimilar metals into one plate. The titanium-copper cladding material between titanium which has excellent corrosion resistance and copper which has high thermal and electrical conductivity, are highly valuable composite materials. It can be used as heat exchangers with high conductivity under severe corrosion conditions. In order to apply the clad plate to the heat exchanger, it must be manufactured in the form of a tube and additional welding is required. It is important to select the cladding material manufacturing process and the welding process. The process of manufacturing the cladding material includes extrusion, rolling, and explosive bonding. Among them, the explosive bonding process is suitable for additional welding because no heat-affected zone is formed. In this study TIG welding of the explosive-bonded dissimilar clad plates was successfully performed by butt welding. The microstructures and bonding interface of the welded part were observed, and the effect of the bonding layer at the welding interface and the intermetallic compounds on the mechanical properties and tensile plastic deformation behaviors were analyzed. And also the integrity of TIG-welded dissimilar part was evaluated.

Electrochemical Oxidation of Pigment Wastewater Using the Tube Type Electrolysis Module System with Recirculation (재순환방식 튜브형 전해모듈시스템을 이용한 안료폐수의 전기화학적 산화)

  • Jeong, Jong Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.411-419
    • /
    • 2016
  • The objective of this study was to evaluate the application possibility of tube type electrolysis module system using recirculation process through removal organic matters and nitrogen in the pigment wastewater. The tube type electrolysis module consisted of a inner rod anode and an outer tube cathode. Material used for anode was titanium electroplated with $RuO_2$. Stainless steel was used for cathode. It was observed that the pollutant removal efficiency was increased according to the decrease of flowrate and increase of current density. When the retention time in tube type electrolysis module system was 180 min, chlorate concentration was 382.4~519.6 mg/L. The chlorate production was one of the major factors in electrochemical oxidation of tube type electrolysis module system using recirculation process used in this research. The pollutant removal efficiencies from the bench scale tube type electrolysis module system using recirculation operated under the electric charge of $4,500C/dm^2$ showed the $COD_{Mn}$ 89.6%, $COD_{Cr}$ 67.8%, T-N 96.8%, and Color 74.2%, respectively and energy consumption was $5.18kWh/m^3$.

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

Minimization of the Spring back in the Coiling Process of the Helical Steam Generator Tubes of Integral Reactor SMART (일체형원자로 SMART의 나선형 증기발생기 전열관 코일링 시 스프링백 최소화 방안)

  • Kim, Yong-Wan;Kim, Jong-In;Chang, Moon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.837-842
    • /
    • 2000
  • In the coiling process of helical steam generator tubes of integral reactor SMART, a considerable amount of spring back, which induces dimensional inaccuracy and difficulty in fabrication, has been arised. In this research, an analytical model was derived to evaluate the amount of the spring back for steam generator tubes. The model was developed on the basis of beam theory and elastic-perfectly plastic material property. This model was extended to consider the effect of plastic hardening and the effect of the tensile force on the spring back phenomena. Parametric studies were performed for various design variables of steam generator tubes in order to minimize the spring back in the design stage. A sensitivity analysis has shown that the low yield strength, the high elastic modulus, the small helix diameter, and the large tube diameter result in a small amount of the spring back. The amount of the spring back can be controlled by the selection of adequate design values in the basic design stage and reduced to an allowable limit by the application of the tensile force to the tube during the coiling process.

  • PDF

Preparation of Titania Nanotube Thin films by Anodizing (양극산화를 이용한 Titania Nanotube(TNT) 박막 제조)

  • Lee, Young-Rok;Jung, Ji-Hoon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • Titania nanotube(TNT), which is a tube shaped thin film manufactured by anodizing titanium under $F^-$ ion electrolyte, has photo activity. Distilled water and formamide were used as solvent, and HF, NaF, $NH_4F$ were used as main $F^-$ ions for the electrolyte. The length and the diameter of TNT increased as the voltage and anodizing time increased. TNT prepared by anodizing was a very ordered tube, and had a maximum length of 13.7 ${\mu}m$ depending on the conditions of manufacturing. Titania prepared by anodizing was amorphous, and became an anatase crystal after heat treatment.

Synthesis and Analysis of Nanosized TiO2 Particles Using a Tube Furnace (튜브 전기로를 이용한 TiO2 나노입자의 합성 및 특성 분석)

  • 배귀남;현정은;이태규;정종수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.411-419
    • /
    • 2004
  • Titania particles are widely used as a photocatalyst to treat various contaminants in air and water. Titania particles were formed by vapor-phase oxidation of titanium tetraisopropoxide (TTIP) in a tube furnace between 773 and 1,273 K. The effect of process variables such as furnace temperature, flow rate of carrier air, and flow rate of sheath air on powder size and phase characteristics was investigated using a scanning mobility particle sizer (SMPS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The size distribution of synthesized titania particles was characterized with mode diameter and peak concentration. The mode diameter ranging from 20 to 80 nm decreased with increasing flow rates of sheath air and carrier air, and increased with increasing furnace temperature. The peak concentration increased with increasing flow rates of sheath air and carrier air The best synthetic condition for high production rate can be derived from the experimental data set represented by mode diameter and peak concentration. The crystal structure of synthesized titania particles was found to be anatase phase, ensuring high photocatalytic potential.