• 제목/요약/키워드: Titanium Nitride (TiN)

검색결과 112건 처리시간 0.027초

Evaluation of antibacterial activity and osteoblast-like cell viability of TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coating on titanium

  • Ji, Min-Kyung;Park, Sang-Won;Lee, Kwangmin;Kang, In-Chol;Yun, Kwi-Dug;Kim, Hyun-Seung;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권2호
    • /
    • pp.166-171
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate antibacterial activity and osteoblast-like cell viability according to the ratio of titanium nitride and zirconium nitride coating on commercially pure titanium using an arc ion plating system. MATERIALS AND METHODS. Polished titanium surfaces were used as controls. Surface topography was observed by scanning electron microscopy, and surface roughness was measured using a two-dimensional contact stylus profilometer. Antibacterial activity was evaluated against Streptococcus mutans and Porphyromonas gingivalis with the colony-forming unit assay. Cell compatibility, mRNA expression, and morphology related to human osteoblast-like cells (MG-63) on the coated specimens were determined by the XTT assay and reverse transcriptase-polymerase chain reaction. RESULTS. The number of S. mutans colonies on the TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coated surface decreased significantly compared to those on the non-coated titanium surface (P<0.05). CONCLUSION. The number of P. gingivalis colonies on all surfaces showed no significant differences. TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coated titanium showed antibacterial activity against S. mutans related to initial biofilm formation but not P. gingivalis associated with advanced periimplantitis, and did not influence osteoblast-like cell viability.

Diamond-like carbon 및 titanium nitride 박막의 혈액적합성 연구 (Study on blood compatibility of diamond-like carbon and titanium nitride films)

  • 윤주영;배진우;박기동;구현철;박형달;정광화
    • 한국진공학회지
    • /
    • 제14권3호
    • /
    • pp.165-170
    • /
    • 2005
  • 의료용 임플랜트의 혈액적합성 개선을 위하여 박막코팅에 대한 관심이 증대하고 있다. 특히 diamond-like carbon(DLC)과 titanium nitride(TiN) 박막은 우수한 화학, 물리적 성질은 물론 생체적합 특성까지 갖추고 있다. 따라서 이들 박막의 혈액 적합성과 물리적 특성과의 관개를 연구하기 위하여 박막표면의 모폴로지 및 젖음성과 fibrinogen흡착 특성을 비교 분석하였다. 혈액응고 원인이 되는 fibrinogen의 흡착량은 DLC보다 TiN의 경우가 적어, 보다 우수한 특성을 보였으며, 이것은 TiN박막 표면의 높은 친수성으로 인한 것으로 판단된다. 박막표면의 fibrinogen 흡착을 줄이기 위해 플라즈마 처리 및 노(爐) 열처리를 각각 수행하였다. 산소 플라즈마 및 열처리를 하였을 경우 DLC 박막은 큰 효과가 없는 반면 TiN 박막의 경우 fibrinogen 흡착량이 크게 줄어 보다 개선된 결과를 보였다.

자체반응열 고온합성법에 의한 질화티타늄 합성에 관한 연구 (A Study on the Synthesis of Titanium Nitride by SHS(Self-propagating High-temperature Synthesis) Method)

  • 하호;김광래;이희철
    • 한국세라믹학회지
    • /
    • 제30권12호
    • /
    • pp.1096-1102
    • /
    • 1993
  • Titanium nitride was synthesized by reacting Ti powder with nitrogen gas using SHS method. In this process, the effects of nitrogen pressure, dilution with TiN, or additiion of titanium hydride(TiH1.924) on the conversion of Ti to TiN were investigated. In particular, much effects were given to solve the problem of the conversion drop due to partial melting and subsequent sintering of Ti parciels, by controlling combustion temperature and combustion wave velocity via mixing Ti powder with TiN or/and TiH1.924. For the diluted titanium powders with TiN, the conversion close to 100% was resulted when the nitrogen pressure was over 8atm and with diluent content of 60wt%, and the self-propagating reaction was not sustained when the diluent content was higher than 60wt%. For samples mixed to be 55wt% in Ti component in the mixture of Ti, TiH1.924, and 45% TiN, the conversion was closed to 100% when the amount of titanium hydride added was over 7wt% and the nitrogen pressure was higher than 5atm. The combustion reaction, however, was not sustained when titanium hydride added was more than 10wt%.

  • PDF

Sintering Behavior of Mechanically Alloyed Titanium - Titanium Nitride Nanocomposite Powders

  • Dabhade, Vikram V.;Panigrahi, B.B.;Godkhindi, M.M.;Rama Mohan, T. R.;Ramakrishnan, P.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.274-275
    • /
    • 2006
  • The sintering behavior of titanium-titanium nitride nanocomposite powders has been studied by dilatometry. Titanium. titanium nitride nanocomposite powders were produced by the reactive milling of micron sized titanium powder $(12\;{\mu}m)$ in nitrogen atmosphere. The Ti-TiN nanocomposite powders milled for various durations along with the initial micron sized Ti powders were then sintered in the temperature range of $450-1000^{\circ}C$ by a constant rate of heating $(10^{\circ}C/min)$. The linear shrinkage, shrinkage rate, activation energy for sintering and microstructure has been studied and discussed as a function of milling time.

  • PDF

A STUDY ON MECHANICAL PROPERTIES OF TiN, ZrN AND WC COATED FILM ON THE TITANIUM ALLOY SURFACE

  • Oh, Dong-Joon;Kim, Hee-Jung;Chung, Chae-Heon
    • 대한치과보철학회지
    • /
    • 제44권6호
    • /
    • pp.740-750
    • /
    • 2006
  • Statement of problems. In an attempt to reduce screw loosening, dry lubricant coatings such as pure gold or tefron have been applied to the abutment screw. However, under repeated tightening and loosening procedures, low wear resistance and adhesion strength of coating material produced free particles on the surface of abutment screw and increased frictional resistance resulting in screw tightening problems. Purpose. The aim of this study was to compare friction coefficient, adhesion strength, vickers hardness and evaluate coating surface of titanium alloy specimens coated with TiN(titanium nitride), ZrN(zirconium nitride) and WC(tungsten carbide). Material and method. Titanium alloy(Ti-6Al-4V) discs of 12mm in diameter and 1mm in thickness divided into 4 groups. TiN, ZrN and WC was coated for the specimens of 3 groups respectively, and those of 1 group were not coated. Each group was made up of 4 specimens. In this study, sputtering method was used among the PVD(Physical Vapor Deposition) techniques available for TiN, ZrN and WC coatings. Friction coefficient, adhesion strength, vickers hardness and coating surface of 4 groups were measured. Results. 1. For all three coating conditions, friction coefficient was significantly decreased. Especially, ZrN coated surface showed the lowest value. $TiN(0.39{\pm}0.02)$, $ZrN(0.24{\pm}0.01)$, $WC(0.31{\pm}0.03)$. 2. TiN coating showed the highest adhesion strength, however ZrN coating had the lowest value. $TiN(25.3N{\pm}1.6)$, $ZrN(14.8N{\pm}0.6)$, $ WC(18.4N{\pm}0.7)$. 3. Vickers hardness of all three coatings was remarkably increased as compared with that of none coated specimen. TiN coating had the highest Vickers hardness, however WC coating showed the lowest value. $TiN(1865.2{\pm}33.8)$, $ZrN(1814.4{\pm}18.6)$, $WC(1008.5{\pm}35.9)$. 4. The ZrN or WC coated specimen showed a homogeneous and smooth surface, however the rough surface with defects was observed for TiN coating. Conclusions. When TiN, ZrN and WC coating applied to the abutment screw, frictional resistance would be reduced, as a result, the greater preload and prevention of the screw loosening could be expected.

Wetting properties between silver-copper-titanium braze alloy and hexagonal boron nitride

  • Sechi, Yoshihisa;Matsumoto, Taihei;Nakata, Kazuhiro
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.205-209
    • /
    • 2009
  • Wetting properties between silver-copper-titanium braze alloys with different titanium contents up to 2.8 mass% and hexagonal boron nitride ceramics were investigated using sessile drop method at 1123K in Argon. The final contact angle is less than $30^{\circ}$ when the Ti content was over 0.41 mass%. Meanwhile, the contact angle curves show different behavior. In case of using braze alloy containing 2.8 mass% of titanium, the initial contact angle is acute angle just after the melting of braze. In case of brazes containing titanium less than 2.26 mass%, the contact angle is larger than $90^{\circ}$ at the beginning and slowly decreases to acute angle. The reaction layer of titanium nitride is observed at the interface. In addition, the reaction of Ti in the braze and N in the bulk h-BN seemed to show diffusion limited spreading.

  • PDF

Selective Carbonization and Nitridation of Titanium in (ZrTi)O2 Powders Synthesized by Copreciptation Method

  • Shin Soon-Gi
    • 한국재료학회지
    • /
    • 제15권10호
    • /
    • pp.662-666
    • /
    • 2005
  • Solid solutions of $(Zr/Ti)O_2$ were prepared in powder form by the coprecipitation technique. After mixing with carbon or exposing to nitrogen gas at elevated temperature, titanium cations selectively diffused out from the oxide compound to form titanium carbide (TiC) or titanium nitride (TiN), respectively. TiN formed strong interfacial contacts between the oxide grains. In contrast, TiC formed as small crystallites on oxide grains but did not bind the matrix grains together. TiN therefore played a role in strengthening the interparticle bonding, but TiC weakened the bonding between grains. Partial diffusion of titanium cations also led to nanolayered structure being formed between the oxide grains, which provided weak interfacial layers that fractured in a step-wise fashion.

Coated $Si_3N_4$-TiC Ceramic 공구의 마모 특성 (Wear Characteristics of Coated $Si_3N_4$-TiC Ceramic Tool)

  • 김동원;권오관;이준근;천성순
    • Tribology and Lubricants
    • /
    • 제4권2호
    • /
    • pp.44-51
    • /
    • 1988
  • Titanium carbide(TiC), Titanium nitride(TiN), and Titanium carbonnitride(Ti(C,N)) films were deposited on $Si_3N_4$-TiC composite cutting tools by chemical vapor deposition(CVD) using $TiCl_4-CH_4-H_2$, $TiCl_4-N_2-H_2$, and $TiCl_4-CH_4-N_2-H_2$ gas mixtures, respectively. The experimental results indicate that TiC coatings compared with TiN coatings on $Si_3N_4$ -TiC ceramic have an improved microstructural property, good thermal shock resistance, and good interfacial bonding. However TiN coatings compared with TiC coatings have a low friction coefficient with steel and good chemical stability. It is found by cutting test that coated insert compared with $Si_3N_4$-TiC ceramic have a superior flank and crater wear resistance. And multilayer coating compared with monolayer coating shows a improved wear resistance.

박막증착시 티타늄 표면의 마손저항도와 세포독성에 관한 연구 (A STUDY ON THE RESISTANCE OF WEAR AND CYTOTOXICITY OF THE TITANIUM SURFACE AFTER FILM DEPOSITIONS)

  • 김형우;김창회;김영수
    • 대한치과보철학회지
    • /
    • 제39권1호
    • /
    • pp.84-95
    • /
    • 2001
  • Titanium is widely used in dentistry for its low density, high strength, fatigue resistance, corrosion resistance, and biocompatibility. But it has a tendency of surface damage under circumstance of friction and impact for its low hardness of the surface. Coating is one of methods fir increasing surface hardness. Its effect is to improve surface physical characteristics without change of titanium. Diamond-like carbon and titanium nitride are known for its high hardness of the surface. So that this study was aimed at the wear test and the cytotoxicity test of the commercially pure titanium and Ti-6Al-4V alloy which were deposited by diamond-like carbon film or titanium nitride film to acertain improvement of the surface hardness and the biocompatibility. A disk (25mm diameter, 2mm thickness) was made of commercially pure titanium and Ti-6Al-4V alloy and these substrates were deposited by diamond-like carbon film or titanium nitride film. Diamond-like carbon film was deposited by the method of radiofrequency plasma assisted chemical vapor deposition and titanium nitride film was deposited by the method of reactive arc ion plating. Then these substrates were tested about wear characteristics by the pin-on-disk type wear tester in which ruby ball was used as a wear causer under the load of 32N, The fracture cycles were measured by rotating the substrates until their films were fractured. The wear volume was measured after 150 cycles and 3,000 cycles using surface profiler. The cytotoxicity test was peformed by the method of the MTT assay. The results were as follows : 1. In the results of the wear volume test, commercially pure titanium and titanium alloy which were coated by diamond-like carbon film or titanium nitride aim had higher resistance against wear than the substrates which were not coated by any films (P<0.05). 2. In the results of the fracture cycle test and the wear volume test, diamond-like carbon film had higher resistance against wear than titanium nitride film (P<0.05). 3. In both coatings of diamond-like carbon aim and titanium nitride film, Ti-6Al-4V alloy had higher resistance against wear than commercially pure titanium (P<0.05) 4. In the results of the cytotoxicity test, diamond-like carbon film and titanium nitride film had little cytotoxicity as like commercially pure titanium or Ti-6Al-4V alloy (P>0.05).

  • PDF

Thermal Decomposition of Tetrakis(ethylmethylamido) Titanium for Chemical Vapor Deposition of Titanium Nitride

  • Kim, Seong-Jae;Kim, Bo-Hye;Woo, Hee-Gweon;Kim, Su-Kyung;Kim, Do-Heyoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권2호
    • /
    • pp.219-223
    • /
    • 2006
  • The thermal decomposition of tetrakis(ethylmethylamido) titanium (TEMAT) has been investigated in Ar and $H_2$ gas atmospheres at gas temperatures of 100-400 ${^{\circ}C}$ by using Fourier Transform infrared spectroscopy (FTIR) as a fundamental study for the chemical vapor deposition (CVD) of titanium nitride (TiN) thin film. The activation energy for the decomposition of TEMAT was estimated to be 10.92 kcal/mol and the reaction order was determined to be the first order. The decomposition behavior of TEMAT was affected by ambient gases. TEMAT was decomposed into the intermediate forms of imine (C=N) compounds in Ar and $H_2$ atmosphere, but additional nitrile (RC$\equiv$N) compound was observed only in $H_2$ atmosphere. The decomposition rate of TEMAT under $H_2$ atmosphere was slower than that in Ar atmosphere, which resulted in the extension of the regime of the surface reaction control in the CVD TiN process.