• Title/Summary/Keyword: Titania nanotubes

Search Result 24, Processing Time 0.023 seconds

Preparation of Visible-light Active TiO2 Nanotubes by Solution Method (액상법에 의한 가시광감응성 티타니아 나노튜브의 제조)

  • Lee, Hyun-Mi;So, Won-Wook;Baeg, Jin-Ook;Kong, Ki-Jeong;Moon, Sang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.182-185
    • /
    • 2012
  • N-doped $TiO_2$nanotubes have been newly prepared by two stage sol-gel and strong-alkali hydrothermal process using $TiCl_4$ and hydrazine/ammonia aqueous solution as raw materials. These nanotubes revealed a well developed anatase crystalline phase and perfect nanotube morphology with the diameter around 10nm and the wall thickness below 3 nm. Also, they showed a superior visible light activity and yellowish color due to the light absorption redshifted by ~35 nm and ~25 nm compared to undoped $TiO_2$ nanotubes and anatase nanoparticles, respectively.

Surface Treatments of Titanium Biomaterials by Anodization (양극산화법에 의한 생체적합형 티타늄 표면 개질)

  • Mun, Kyu-Shik;Kim, Jae-Yeon;Kim, Dong-Hyun;Cheon, Se-Jun;Kim, Hyo-Eun;Lee, Myoung-Hoon;Choi, Won-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.306-306
    • /
    • 2007
  • The surface was transformed to porous titanium oxide by the anodization of pure titanium. Titanium was anodized in non-aqueous and aqueous electrolytes at different potentials between 5 V and 150 V. Various electrolytes were compose of ethylene glycerol, $H_2SO_4,\;NH_4F\;and\;H_2O$. We obtained titania nanotube arrays on the micro pore of titanium. Micro pores and nano tubes were obtained by anodization at high potentials and low potentials, respectively. Morphologies of nanotubes and micro pore were characterized by FE-SEM. The unique surface structure is very attractive to electrical and medical applications such as gas sensor, biosensor, dental implant and stent.

  • PDF

Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications (양극산화 기술을 이용한 금속산화물 나노구조 제조 및 응용 동향)

  • Choi, Jinsub;Lee, Jae Kwang;Lim, Jae Hoon;Kim, Sung Joong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.249-258
    • /
    • 2008
  • Nanoporous alumina with highly ordered pore arrays, which is prepared based on electrochemical anodization under the controlled conditions, has attracted great attention due to the variety of its applications. In case of porous alumina, the manipulation of nanoporous structures under different electrochemical conditions and their formation mechanisms have been studied for a long time. Recently, its principles have been applied to other valve metals. Especially, there have been a big success in the preparation of titania nanotubes via the anodization of titanium. In this paper, we review the anodization of aluminum and recent trends in anodization of Ti and other valve metals based on the principles of aluminum anodization.

Effects of Anodic Voltages of Photcatalytic TiO2 and Doping in H2SO4 Solutions on the Photocatalytic Activity (광촉매 TiO2의 황산용액에서의 양극산화전압과 도핑이 광촉매 활성에 미치는 영향)

  • Lee, Seung-Hyun;Oh, Han-Jun;Chi, Choong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.439-444
    • /
    • 2012
  • To compare the photocatalytic performances of titania for purification of waste water according to applied voltages and doping, $TiO_2$ films were prepared in a 1.0 M $H_2SO_4$ solution containing $NH_4F$ at different anodic voltages. Chemical bonding states of F-N-codoped $TiO_2$ were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped $TiO_2$ films was analyzed by the degradation of aniline blue solution. Nanotubes were formed with thicknesses of 200-300 nm for the films anodized at 30 V, but porous morphology was generated with pores of 1-2 ${\mu}m$ for the $TiO_2$ anodized at 180 V. The phenomenon of spark discharge was initiated at about 98 V due to the breakdown of the oxide films in both solutions. XPS analysis revealed the spectra of F1s at 684.3 eV and N1s at 399.8 eV for the $TiO_2$ anodized in the $H_2SO_4-NH_4F$ solution at 180 V, suggesting the incorporation of F and N species during anodization. Dye removal rates for the pure $TiO_2$ anodized at 30 V and 180 V were found to be 14.0% and 38.9%, respectively, in the photocatalytic degradation test of the aniline blue solution for 200 min irradiation; the rates for the F-N-codoped $TiO_2$ anodized at 30 V and 180 V were found to be 21.2% and 65.6%, respectively. From the results of diffuse reflectance absorption spectroscopy (DRS), it was found that the absorption edge of the F-N-codoped $TiO_2$ films shifted toward the visible light region up to 412 nm, indicating that the photocatalytic activity of $TiO_2$ is improved by appropriate doping of F and N by the addition of $NH_4F$.