• Title/Summary/Keyword: Titania films

Search Result 34, Processing Time 0.027 seconds

Preparation of Titania Nanotube Thin films by Anodizing (양극산화를 이용한 Titania Nanotube(TNT) 박막 제조)

  • Lee, Young-Rok;Jung, Ji-Hoon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.28-34
    • /
    • 2011
  • Titania nanotube(TNT), which is a tube shaped thin film manufactured by anodizing titanium under $F^-$ ion electrolyte, has photo activity. Distilled water and formamide were used as solvent, and HF, NaF, $NH_4F$ were used as main $F^-$ ions for the electrolyte. The length and the diameter of TNT increased as the voltage and anodizing time increased. TNT prepared by anodizing was a very ordered tube, and had a maximum length of 13.7 ${\mu}m$ depending on the conditions of manufacturing. Titania prepared by anodizing was amorphous, and became an anatase crystal after heat treatment.

Titania-assisted dispersion of carboxylated single-walled carbon nanotubes in ZnO sol for transparent conducting films with high thermal stability ($TiO_2$ 도입에 따른 ZnO 졸에서의 단일벽 탄소나노튜브의 분산안정성 및 그 투명전도성 필름의 고온 안정성)

  • Kim, Bo-Gyeong;Han, Joong-Tark;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.277-277
    • /
    • 2010
  • We present facile chemical route stabilizing dispersion of carboxylated single-Walled carbon nanotubes (SWCNTs) in ZnOsol prepared by using diethanolamine as a stabilizer. The dispersion was stabilized via capping of carboxyl groups on the SWCNT surface by a titania layer. We also demonstrated that the conductivity of the films prepared P3/$TiO_2$/ZnO as enhanced by therml treatment, and the thermal stbility of the film improved hybridization with ZnO sol pristine P3, P3/$SiO_2$ and P3/$TiO_2$ hybrid films.

  • PDF

Titania-assisted dispersion of carboxylated single-walled carbon nanotubes in ZnO sol for transprent conducting films with high thermal stability ($TiO_2$ 도입에 따른 ZnO 졸에서의 단일벽 탄소나노튜브의 분산안정성 및 그 투명전도성 필름의 고온 안정성)

  • Kim, Bo-Gyeong;Han, Joong-Tark;Jeong, Hae-Deuk;Jeong, Hae-Deuk;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.41-41
    • /
    • 2010
  • We present facile chemical route stabilizing dispersion of carboxylated single-walled carbon nanotubes (SWCNTs) in ZnOsol prepared by using diethanolamine as a stabilizer. The dispersion was stabilized via capping of carboxyl groups on the SWCNT surface by a titania layer. We also demonstrated that the conductivity of the films prepared P3/$TiO_2$/ZnO as enhanced by therml treatment, and thethermal stbility of the film improved hybridization with ZnO sol pristine P3, P3/$SiO_2$ and P3/$TiO_2$ hybrid films.

  • PDF

Preparation of Hard Coating Films with High Refractive Index using Organic-Inorganic Hybrid Coating Solutions (유-무기 하이브리드 코팅 용액을 이용한 고굴절 하드코팅 막의 제조)

  • Choi, Jin Joo;Kim, Nam Uoo;Ahn, Chi Yong;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.388-394
    • /
    • 2014
  • Inorganic-organic hybrid coating solutions were synthesized using titania sol from titanium isopropoxide (TTIP) as an inorganic component and mixture of two or three types of silane coupling agents, such as methacryloxypropyl trimethoxysilane (MPTMS), aminopropyl triethoxysilane (APS), glycidoxypropyl trimethoxysilane (GPTMS) and vinyltriethoxysilane (VTES) as an organic component. The hard coating films were obtained by spin-coating on the polycarbonate sheets and curing the inorganic-organic hybrid coating solutions. The coating films made from the mixture of two types of silane coupling agents showed poor pencil hardness and adhesion, while those from the mixture of three types of silane coupling agents exhibited an improved pencil hardness of 2H~4H and adhesion of 5B. The refractive indexes of coating films were increased from 1.56 to 1.63 at 550 nm by increasing the content of titania sols from 20 to 30 g.

Preparation and Characterizations of Titania Nanotube Thin Films (티타니아 나노튜브(TNT) 박막의 제조 및 특성에 관한 연구)

  • Lee, Youngrok;Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.652-656
    • /
    • 2011
  • Thin film of titania nanotubes(TNT) and titania nanofilms(TNF) was fabricated by anodizing for the study of the photo-catalytic reaction(PC) and photoelectrocatalytic reaction(PEC). Removal efficiency of methylene blue was investigated by UV radiation on the TNT coated titanium plate. Removal efficiency was increased with longer TNT length. Degradation efficiency of the PEC reaction was less sensitive than that of PC reaction. And Effect of TNT length is relatively small. Titania nanofilms(TNF) showed low efficiency than TNT. The efficiency drop of PC was larger than that of PEC.

Dye-sensitized Solar Cells Based on Fluoran Leuco Sensitizers (플루오란 로이코 염료를 이용한 염료감응형 태양전지)

  • Jung, Hye-In;An, Byeong-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.240-245
    • /
    • 2013
  • The utilization of a fluoran leuco sensitizer, 2-anilino-6-dibutyl amino-3-methylfluoran (ODB-2), for dye-sensitized solar cells (DSSCs) was investigated through the examination of the adsorption of ODB-2 molecules onto the surfaces of porous titanium dioxide (titania, $TiO_2$) films and the photovoltaic properties of ODB-2-based DSSCs. Despite of the absence of the specific anchoring groups with titania, ODB-2 dye molecules were spontaneously adsorbed onto the titania surfaces because the lactone ring in ODB-2 was opened and changed into the carboxylic acid (-COOH) by releasing protons from the surfaces ($TiOH_2{^+}$) of titania, which consequently leads to the chemisorption reaction of ODB-2 molecules to the active sites of titania. DSSCs based on ODB-2 exhibited typical photovoltaic properties with an open-circuit voltage ($V_{OC}$) of 0.19 V, a short-circuit current ($J_{SC}$) of $0.30\;mA{\cdot}cm^{-2}$, a fill factor (FF) of 37%, and a conversion efficiency (PCE) of 0.02%.

Preparation and Characterization of Hydrophilic TiO2 Film

  • Park, Jin-Koo;Kim, Ho-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.745-748
    • /
    • 2002
  • A novel titania sol for the preparation of hydrophilic TiO2 films was synthesized from TiCl4. TiO2 films were prepared by spraying the sol on glass substrates and the hydrophilic properties of the films were invest igated with illumination of UV light. The contact angle of a water drop on the films decreased to less than 7˚, which indicates the excellent hydrophilicity of the TiO2 films.

CdS-Titania-Nanotube Composite Films for Photocatalytic Hydrogen Production (CdS/Titania-나노튜브 복합 막을 이용한 광촉매적 수소제조)

  • Lee, Hyun-Mi;So, Won-Wook;Baeg, Jin-Ook;Kong, Ki-Jeong;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.230-237
    • /
    • 2007
  • Titania nanotube(TiNT) and CdS sol were synthesized by hydrothermal reaction under strongly basic condition and by precipitation reaction of $Cd(N0_3)_2$ and $Na_2S$ aqueous solutions, respectively. After preparing a series of CdS-TiNT composite films on $F:SnO_2$ conducting glass with variation of the mole ratio (r) of TiNT/(CdS+TiNT), their visible light absorption, photocatalytic activities for hydrogen production, and the photocurrent generation were examined. In general, this CdS-TiNT series showed lower photocatalytic activities and photocurrent generation under Xe light irradiation compared to their counterparts, i.e., CdS-$TiO_2$ particulate series. It appeared that TiNTs are not so effective photocatalyic material in spite of their larger specific surface areas compared to $TiO_2$ nanoparticles, because they indicate a poor crystallinity and less intimate interaction or contact with CdS particles owing to the tubular morphology and an easy agglomeration among themselves.