• Title/Summary/Keyword: Tissue-specific T Cells

Search Result 93, Processing Time 0.032 seconds

Enhancement of Tissue Type Plasminogen Activator (tPA) Production from Recombinant CHO Cells by Low Electromagnetic Fields

  • Lee, Seo-Ho;Lee, Hyun-Soo;Lee, Mi-Kyoung;Lee, Jin-Ha;Kim, Jong-Dai;Park, Young-Shik;Lee, Shin-Young;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.457-462
    • /
    • 2002
  • Low Electromagnetic Field (EMF) intensity in the range of $1{\mu}T\;to\;10{\mu}T$(Tesla) was found to enhance the growth of CHO cells and the production of tPA in batch and perfusion cultivations. At $1{\mu}T\;intensity,\;1.3{\times}10^7$ viable cells/ml of maximum cell density and 80 mg/l of maximum tPA production were obtained in batch cultivation, compared to $2.8{\times}10^6$ viable cells/ml and 59 mg tPA/1 in unexposed case (control). A similar trend was observed in the perfusion process, where it was possible to obtain $1.2{\times}10^7$ viable cells/ml of maximum cell density and 81 mg tPA/l of maximum tPA production by more than 80 days of cultivation. However, there was not much difference between $1{\mu}T\;and\;10{\mu}T$ in perfusion cultivation, possibly due to better environmental growth conditions being maintained by continuous feeding of fresh medium into the reactor. On the contrary, both cell growth and tPA production were severely inhibited at higher than 1 mT intensity, showing no growth at 10 mT exposure. Specific growth rate was linearly correlated to specific tPA production rate at $1{\mu}T$EMF intensity, which represents a partially growth-related relationship. It was also found that a large amount of $Ca^2+$ was released at low EMF intensity, even though the cell growth was not much affected. Low EMF intensity significantly improved both cell growth and tPA production, and tPA production seemed to be more affected than the cell growth, possibly due to the changes of cell membrane characteristics. It can be concluded that the elaboration of EMF intensity less than $10{\mu}T$ could improve cell growth and tPA production, but mainly tPA secretion through batch or perfusion process in a bioreactor.

Effects of Imperatae Rhizoma Extract on T helper 2 cell differentiation (백모근 추출물의 T helper 2 세포 분화 조절 효과)

  • Kim, Bok-Kyu;Lim, Jong-Soon;Kil, Ki-Jung
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.27-33
    • /
    • 2014
  • Objectives : The aims of this study were to exploring the therapeutic effect of Imperatae Rhizoma Extract(IRE) on Asthma. Methods : To investigate biological modulation activities of IRE, we conducted the cell-based assay whether IRE could regulate T helper 2 cells activity with EL4 T cells and mouse splenocytes, and followed animal study to conform the efficacy of their therapeutic potential on OVA-induced asthmatic mouse. Results : In cell study, IRE suppress the nuclear translocation of GATA binding protein-3 protein in phorbol 12-myristate 13-acetate/Ionomycin-stimulated EL4 T cells and Interleukine(IL)-4, IL-5 and IL-13 production in splenocytes at concentration dependent manner. In animal study, IRE-treated groups both 100mg/ml and 200mg/ml improve airway hypersensitibility reaction(AHR) response to methacholine about 30% and 40% with positive control group. Peritoneal blood analysis reveal that eosinophil number and ovalbumin-specific IgE is reduced by IRE treatment. Cell number of eosinophil is also reduced in bronchoalveolar lavage of IRE group like to peritoneal cell and real time-polymerase chain reaction data show that expression levels of IL-4, IL-5 and IL-13 were down regulated in lung tissue. Finally, histological analysis indicate that IRE protect the bronchial tissue damages through the accumulation of inflammatory cells and collagen, and these effect may be cause by interfering Th2 cells activity. Conclusions : Our data represent that IRE potentiates therapeutic activities to the allergic diseases such as asthma by regulating Th2 cells differentiation.

Production of tissue-type plasminogen activator from immobilized CHO cells introduced hypoxia response element

  • Bae, Geun-Won;Kim, Hong-Jin;Kim, Gi-Tae;Kim, Ik-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.257-260
    • /
    • 2002
  • Dissolved oxygen level of cell culture media has a critical effect on cellular metabolism, which governs specific productivity of recombinant proteins and mammalian cell growth However, in the cores of cell aggregates or cell-immobilized beads, oxygen level frequently goes below a critical level. Mammalian cells have a number of genes induced in the lower level of oxygen, and the genes contain a common cis-acting element (-RCGTG-), hypoxia response element (HRE). By binding of hypoxia inducible factor-l (HIF-I) to the HRE, promoters of hypoxia inducible genes are activated, which is a survival mechanism. In this work, to develop a CHO cell capable of producing recombinant proteins in immobilization and high density cell culture efficiently, mammalian expression vectors containing human tissue-type plasminogen activator (t-PA) gene controlled by HRE were constructed and stably transfected into the CHO cells. In $Ba^{2+}$ -alginate immobilization culture, CHO/pCl/dhfr/2HRE-t-PA cells produced 2 folds higher recombinant t-PA activity than CHO/pCl/dhfrlt-PA cells without $CoCl_2$ treatment. Furthermore, in repeated fed batch culture, productivity of t-PA in immobilized CHO/pCI/dhfr/2HRE-t-PA cells was 121 ng/ml/day, total production of 0.968 mg/day at 11 days culture while CHO/pCIIdhfrlt-PA cells was 22.8 ng/ml/day. All these results indicate that HRE is very useful for the enhancement of protein productivity in mammalian cell cultures.

  • PDF

Callophyllis japonica extract improves high-fat diet-induced obesity and inhibits adipogenesis in 3T3-L1 cells

  • Kang, Seong-Il;Shin, Hye-Sun;Kim, Hyo-Min;Yoon, Seon-A;Kang, Seung-Woo;Ko, Hee-Chul;Kim, Se-Jae
    • Animal cells and systems
    • /
    • v.16 no.6
    • /
    • pp.447-454
    • /
    • 2012
  • The anti-obesity potential of an ethanolic extract of the edible red alga Callophyllis japonica extract (CJE) was investigated in mice fed a high-fat diet (HFD). CJE administration into HFD mice revealed suppression of body weight, adipose tissue weight, serum total cholesterol, triglyceride, and glucose levels in a dose-dependent manner. Also, it reduced serum levels of glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, and lactate dehydrogenase, as well as the accumulation of fatty droplets in liver tissue. CJE and its ethyl acetate fraction inhibited adipogenesis in 3T3-L1 adipocytes by down-regulating the adipocyte-specific transcriptional regulators. Taken together, these results suggest that CJE reduces obesity in mice fed an HFD by inhibiting lipid accumulation and adipogenesis in the adipose tissues.

Autoimmunity (자가 면역)

  • Kim, Joong Gon
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.12
    • /
    • pp.1165-1172
    • /
    • 2007
  • Self/non-self discrimination and unresponsiveness to self is the fundamental properties of the immune system. Self-tolerance is a state in which the individual is incapable of developing an immune response to an individual's own antigens and it underlies the ability to remain tolerant of individual's own tissue components. Several mechanisms have been postulated to explain the tolerant state. They can be broadly classified into two groups: central tolerance and peripheral tolerance. Several mechanisms exist, some of which are shared between T cells and B cells. In central tolerance, the recognition of self-antigen by lymphocytes in bone marrow or thymus during development is required, resulting in receptor editing (revision), clonal deletion, anergy or generation of regulatory T cells. Not all self-reactive B or T cells are centrally purged from the repertoire. Additional mechanisms of peripheral tolerance are required, such as anergy, suppression, deletion or clonal ignorance. Tolerance is antigen specific. Generating and maintaining the self-tolerance for T cells and B cells are complex. Failure of self-tolerance results in immune responses against self-antigens. Such reactions are called autoimmunity and may give rise to autoimmune diseases. Development of autoimmune disease is affected by properties of the genes of the individual and the environment, both infectious and non-infectious. The host's genes affect its susceptibility to autoimmunity and the environmental factors promote the activation of self-reactive lymphocytes, developing the autoimmunity. The changes in participating antigens (epitope spreading), cells, cytokines or other inflammatory mediators contribute to the progress from initial activation to a chronic state of autoimmune diseases.

The Effect of Glutamine on Production of Tissue-type Plasminogen Activator from Recombinant Human Melanoma Cells in Glutamine-limited Fed-batch Cultivation

  • Kim, Hyun-Goo;Kim, Tae-Ho;Kim, Dae-Seok;Park, Kyung-Yu;Park, jin-seo;Ahn, Chol;Lee, Jin-Ha;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.295-298
    • /
    • 1996
  • Under glutamine-limited condition, $2\times10^6$ (viable cells/ml) of maximum cell density and 13.5 ($\mu g$/ml) of tissue-type Plasminogen Activators (tPA) production were maintained by spike feeding fresh medium in fed-batch cultivation of human recombinant melanoma cells. It showed that tPA production was much seriously affected than cell growth according to initial glutamine concentrations. Above 3.4 (mmol/I) of glutamine concentration both cell growth and tPA production were not much affected by increasing initial glutamine concentration. Glutamine depleted situation was occurred at latter periods of batch and fed-batch cultivations below 5.4 (mmole/I) of initial glutamine concentration. It also showed that maximum glutamine consumption and ammonia evolution rates were closely related to initial glutamine concentrations. Maximum specific tPA production rate was estimated as $8.1\times19^{-6}$ ($\mu g$/cells/h) at 3.4(mmol/I) of glutamine concentration, which is higher than that from other batch and fed-batch processes.

  • PDF

Visualization of periodontopathic bacteria within crevicular epithelial cells with fluorescence in situ hybridization (형광제자리부합법을 이용한 치은열구세포 내의 치주염 유발 세균의 관찰)

  • Ko, Young-Kyung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.4
    • /
    • pp.691-698
    • /
    • 2008
  • Purpose: Periodontal pathogens can invade the host tissue. Morphologic studies have revealed bacteria within the pocket epithelium, gingival connective tissues, alveolar bone, and oral epithelium. The objective of this study was to visualize and evaluate presence of Porphyromonas gingivalis and Tannerella forsythia in crevicular epithelial cells of periodontally healthy subjects and chronic periodontitis patients. Materials and Methods: A total of 666 crevicular epithelial cells in the samples obtained from 27 chronic periodontitis patients and 9 healthy volunteers were examined. Specific probes for P. gingivalis and T. forsythia and a universal probe for detection of all eubacteria targeting 168 rRNA for fluorescence in situ hybridization was used in conjunction with confocal laser scanning microscopy. Results: 98.99% of sulcular epithelial cells from healthy volunteers and 84.40% of pocket epithelial cells from periodontitis patients were found to harbor bacteria. P. gingivalis and T. forsythia were discovered more often in crevicular epithelial cells from periodontitis patients. Conclusion: P. gingivalis and T. forsythia can invade crevicular epithelial cells and intracellular bacteria may act as a source of bacteria for persistent infection.

Effect of HRE and Bcl-2 on the Production of Plasminogen Activator in CHO cells

  • Bae, Geun-Won;No, Jeong-Gwon;Lee, Gyu-Min;Kim, Ik-Yeong;Kim, Ik-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.261-264
    • /
    • 2002
  • CHO (Chinese hamster ovary) cells were transfected with plasmids containing both cis-acting HRE (hypoxia response element) and CMV-promoter that controls tissue-type plasminogen activator (t-PA). CHO cells with HRE produced 16.2 fold higher t-PA concentration than CHO cells without HRE. It was noted that hypoxia strongly induced CHO cell apoptosis. which resulted in decrease of cell viability and protein production. In this study. by introducing Bcl-2, anti-apoptotic gene, we tried to recover cell viability and increase the protein production. When batch culture of both control cells without transfection of Bcl-2 and cells transfected with Bcl-2 were performed in the absence of CoCl ι hypoxia mimic condition. the cells with Bcl-2 were effected specific cell growth rates, maximum cell density. Immunoblotting assay showed Bcl-2 was recombinant with HRE dependent t- P A expression cassette, and their expression level was depended on hypoxia. By introducing Bcl-2, both cell viability and maximum cell density could be increased.

  • PDF

Vaccine Strategy That Enhances the Protective Efficacy of Systemic Immunization by Establishing Lung-Resident Memory CD8 T Cells Against Influenza Infection

  • Hyun-Jung Kong;Youngwon Choi;Eun-Ah Kim;Jun Chang
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.32.1-32.15
    • /
    • 2023
  • Most influenza vaccines currently in use target the highly variable hemagglutinin protein to induce neutralizing antibodies and therefore require yearly reformulation. T cell-based universal influenza vaccines focus on eliciting broadly cross-reactive T-cell responses, especially the tissue-resident memory T cell (TRM) population in the respiratory tract, providing superior protection to circulating memory T cells. This study demonstrated that intramuscular (i.m.) administration of the adenovirus-based vaccine expressing influenza virus nucleoprotein (rAd/NP) elicited weak CD8 TRM responses in the lungs and airways, and yielded poor protection against lethal influenza virus challenge. However, a novel "prime-and-deploy" strategy that combines i.m. vaccination of rAd/NP with subsequent intranasal administration of an empty adenovector induced strong NP-specific CD8+ TRM cells and provided complete protection against influenza virus challenge. Overall, our results demonstrate that this "prime-and-deploy" vaccination strategy is potentially applicable to the development of universal influenza vaccines.

Phosphatase Ssu72 Is Essential for Homeostatic Balance Between CD4+ T Cell Lineages

  • Min-Hee Kim;Chang-Woo Lee
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.12.1-12.17
    • /
    • 2023
  • Ssu72, a dual-specificity protein phosphatase, not only participates in transcription biogenesis, but also affects pathophysiological functions in a tissue-specific manner. Recently, it has been shown that Ssu72 is required for T cell differentiation and function by controlling multiple immune receptor-mediated signals, including TCR and several cytokine receptor signaling pathways. Ssu72 deficiency in T cells is associated with impaired fine-tuning of receptor-mediated signaling and a defect in CD4+ T cell homeostasis, resulting in immune-mediated diseases. However, the mechanism by which Ssu72 in T cells integrates the pathophysiology of multiple immune-mediated diseases is still poorly elucidated. In this review, we will focus on the immunoregulatory mechanism of Ssu72 phosphatase in CD4+ T cell differentiation, activation, and phenotypic function. We will also discuss the current understanding of the correlation between Ssu72 in T cells and pathological functions which suggests that Ssu72 might be a therapeutic target in autoimmune disorders and other diseases.