• Title/Summary/Keyword: Tissue-regeneration

Search Result 1,318, Processing Time 0.03 seconds

Development of Scaffold for Cell Attachment and Evaluation of Tissue Regeneration Using Stem Cells Seeded Scaffold (세포부착을 위한 스캐폴드 개발 및 줄기세포를 적용한 스캐폴드의 조직재생능력 평가)

  • You, Hoon;Song, Kyung-Ho;Lim, Hyun-Chang;Lee, Jung-Seok;Yun, Jeong-Ho;Seo, Young-Kwon;Jung, Ui-Won;Lee, Yong-Keun;Oh, Nam-Sik;Choi, Seong-Ho
    • Implantology
    • /
    • v.18 no.2
    • /
    • pp.120-138
    • /
    • 2014
  • Purpose: The purpose of this study was to review the outcomes of a series of studies on tissue regeneration conducted in multiple institutions including the Department of Periodontology, College of Dentistry, Yonsei University. Materials and Methods: Studies were performed divided into the following three subjects; 1) Development of three-dimensional nano-hydroxyapatite (n-HA) scaffold for facilitating drug release and cell adhesion. 2) Synergistic effects of bone marrow-derived mesenchymal stem cells (BMMSC) application simultaneously with platelet-rich plasma (PRP) on HA scaffolds. 3) The efficacy of silk scaffolds coated with n-HA. Also, all results were analyzed by subjects. Results: Hollow hydroxyapatite spherical granules were found to be a useful tool for the drug release and avidin-biotin binding system for cell attachment. Also, BMMSC simultaneously with PRP applied in an animal bone defect model was seen to be more synergistic than in the control group. But, the efficacy of periodontal ligament cells and dental pulp cells with silk scaffolds could not be confirmed in the initial phase of bone healing. Conclusion: The ideal combination of three elements of tissue engineering-scaffolds, cells and signaling molecules could be substantiated due to further investigations with the potentials and limitations of the suggested list of studies.

Rx for Tissue Restoration: Regenerative Biology and Medicine

  • Stocum, David L.
    • Animal cells and systems
    • /
    • v.5 no.2
    • /
    • pp.91-99
    • /
    • 2001
  • Vertebrates regenerate tissues in three ways: proliferation of cells that maintain some or all of their differentiated structure and function, redifferentiation of mature cells followed by proliferation and redifferentiation into the same cell type or transdetermination to another cell type, and activation of restricted lineage stem cells, which have the ability to transdetermine to different lineages under the appropriate conditions. The behavior of the cells during regeneration is regulated by growth factors and extracellular matrix molecules. Some non-regenerating tissues are now known to harbor stem cells which, though they form scar tissue in vivo, are capable of producing new tissue-specific cells in vitro, suggesting that the injury environment inhibits latent regenerative capacity. Regenerative medicine seeks to restore tissues via transplantation of stem cell derivatives, implantation of bioartificial tissues, or stimulation of regeneration in vivo. These approaches have been partly successful, but several research issues must be addressed before regenerative medicine becomes a clinical reality.

  • PDF

Electrospun poly(D,L-lactic acid)/gelatin membrane using green solvent for absorbable periodontal tissue regeneration

  • Dayeon Jeong;Juwoong Jang;Deuk Yong Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.104-109
    • /
    • 2023
  • Electrospinning was performed using an eco-friendly solvent composed of acetic acid, ethyl acetate and distilled water to investigate the effect of gelatin concentration on mechanical properties and cytotoxicity of absorbable poly(D,L-lactic acid) (PDLLA)/gelatin blend membrane. The tensile stress, strain at break, and WUC of the PDLLA/gelatin (97/3) scaffold at 26 wt% concentration were determined to be 3.9 ± 0.7 MPa, 37 ± 1.3 %, and 273 ± 33 %, respectively. FT-IR results revealed that PDLLA and gelatin were bound only by van der Waals interactions. The cell viability of PDLLA/gelatin membranes containing 0 %, 1 %, 2 %, 3 %, and 4 % gelatin were more than 100 %, which makes all membranes highly suitable as a barrier membrane for absorbable periodontal tissue regeneration due to their marketed physical properties and biocompatibility.

USEFULNESS OF ACELLULAR DERMAL MATRIX GRAFT ON THE TISSUE REGENERATION IN RABBITS (가토에서 조직 재생 이식재로서 무세포성 진피 기질의 효용)

  • Choi, Jong-Hak;Ryu, Jae-Young;Ryu, Sun-Youl
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.2
    • /
    • pp.220-229
    • /
    • 2008
  • Purpose: The present study was aimed to examine the effect of acellular dermal matrix ($AlloDerm^{(R)}$) grafted to the experimental tissue defect on tissue regeneration. Materials and Methods: Male albino rabbits were used. Soft tissue defects were prepared in the external abdominal oblique muscle. The animals were then divided into 3 groups by the graft material used: no graft, autogenous dermis graft, and $AlloDerm^{(R)}$ graft. The healing sites were histologically examined at weeks 4 and 8 after the graft. In another series, critical sized defects with 8-mm diameter were prepared in the right and left iliac bones. The animals were then divided into 5 groups: no graft, grafted with autogenous iliac bone, $AlloDerm^{(R)}$ graft, $AlloDerm^{(R)}$ graft impregnated with rhBMP-2, and $AlloDerm^{(R)}$ graft with rhTGF-${\beta}1$. The healing sites of bone defect were investigated with radiologic densitometry and histological evaluation at weeks 4 and 8 after the graft. Results: In the soft tissue defect, normal healing was seen in the group of no graft. Inflammatory cells and foreign body reactions were observed in the group of autogenous dermis graft, and the migration of fibroblasts and the formation of vessels into the collagen fibers were observed in the group of $AlloDerm^{(R)}$ graft. In the bone defect, the site of bone defect was healed by fibrous tissues in the group of no graft. The marked radiopacity and good regeneration were seen in the group of autogenous bone graft. There remained the traces of $AlloDerm^{(R)}$ with no satisfactory results in the group of $AlloDerm^{(R)}$ graft. In the groups of the $AlloDerm^{(R)}$ graft with rhBMP-2 or rhTGF-${\beta}1$, there were numerous osteoblasts in the boundary of the adjacent bone which was closely approximated to the $AlloDerm^{(R)}$ with regeneration features. However, the fibrous capsule also remained as in the group of $AlloDerm^{(R)}$ graft, which separated the $AlloDerm^{(R)}$ and the adjacent bone. Conclusions: These results suggest that $AlloDerm^{(R)}$ can be useful to substitute the autogenous dermis in the soft tissue defect. However, it may not be useful as a bone graft material or a carrier, since the bone defect was not completely healed by the bony tissue, regardless of the presence of osteogenic factors like rhBMP-2 or rhTGF-${\beta}1$.

In Vitro Multiple Regeneration from Cotyledons and Hypocotyls of Impatiens

  • Shin, Dong-Young
    • Plant Resources
    • /
    • v.2 no.1
    • /
    • pp.10-15
    • /
    • 1999
  • In vitro shoot regeneration from cotyledon and hypocotyl explants derived from germinating mature Impatiens seeds. The induction of organogenetic tissue was also influenced by the cotyledon and hypocotyl. Multiple shoot induction was higher in hypocotyl than in the cotyledon explant with Thidiazuron and a NAA medium.

  • PDF

The Effect of e-PTFE Membrane Exposure on the Initial Healing of Periodontal Tissue in GTR Procedure (e-PTFE 차단막을 이용한 조직유도재생술시 e-PTFE 차단막의 노출이 치주조직의 초기치유에 미치는 영향)

  • Moon, Ik-Sang;Kim, Ji-Eun;Song, Kun-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.553-560
    • /
    • 1999
  • The aim of the present study was to evaluate the effect of the expanded polytetrafluoroethylene (e-PTFE) membrane exposure on the initial healing of the periodontal tissue in guided tissue regeneration (GTR) procedure. 90 sites selected from 90 patients were treated with gingival flap surgery supported by an e-PTFE membrane. The material included angular bony defects with probing attachment loss of > 5mm or degree II furcation involvement. Treated sites were classified with membrane exposure group and non-exposure group at membrane removal and evaluated healing type. The results were obtained as follows. 1. e-PTFE membrane was exposed at 61 sites (67.8%) among 90 sites. 2. Thirteen sites (14.4%) depicted rapid healing type, 65 sites (72.2%) depicted typical healing type, 9 sites (10%) showed delayed healing type and 3 sites (3.3%) were categorized as adversed healing type. 3. In e-PTFE membrane exposure group, 1 site (1.6%), 51 sites (83.6%), 6 sites (9.8%) and 3 sites (4.9%) showed rapid healing type, typical healing type, delayed healing type and adverse healing type respectively. 4. In e-PTFE membrane non-exposure group, 12 sites (41.3%), 14 sites (48.3%) and 3 sites (10.3%) showed rapid healing type, typical healing type and delayed healing type respectively. Adverse healing type was not observed. 5. The rate of favourable healing between e-PTFE membrane exposure group and non-exposure group was not statistically significant(p=0.56). These results suggest that the prevention of membrane exposure may be important to obtain rapid healing type. However favourable healing could be obtained with stringent infection control program even if membrane was exposed.

  • PDF

A randomized controlled clinical study of periodontal tissue regeneration using an extracellular matrix-based resorbable membrane in combination with a collagenated bovine bone graft in intrabony defects

  • Kim, Sulhee;Chang, Hyeyoon;Hwang, Jin wook;Kim, Sungtae;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Lee, Jong-Ho;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.6
    • /
    • pp.363-371
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the feasibility of regenerative therapy with a collagenated bone graft and resorbable membrane in intrabony defects, and to evaluate the effects of the novel extracellular matrix (ECM)-based membrane clinically and radiologically. Methods: Periodontal tissue regeneration procedure was performed using an ECM-based resorbable membrane in combination with a collagenated bovine bone graft in intrabony defects around the teeth and implants. A novel extracellular matrix membrane (NEM) and a widely-used membrane (WEM) were randomly applied to the test group and the control group, respectively. Cone-beam computed tomography images were obtained on the day of surgery and 6 months after the procedure. Alginate impressions were taken and plaster models were made 1 week and 6 months postoperatively. Results: The quantity of bone tissue, the dimensional changes of the surgically treated intrabony defects, and the changes in width and height below the grafted bone substitutes showed no significant difference between the test and control groups at the 6-month examination. Conclusions: The use of NEM for periodontal regeneration with a collagenated bovine bone graft showed similar clinical and radiologic results to those obtained using WEM.

Development of a mouse model for pulp-dentin complex regeneration research: a preliminary study

  • Kim, Sunil;Lee, Sukjoon;Jung, Han-Sung;Kim, Sun-Young;Kim, Euiseong
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.2
    • /
    • pp.20.1-20.8
    • /
    • 2019
  • Objectives: To achieve pulp-dentin complex regeneration with tissue engineering, treatment efficacies and safeties should be evaluated using in vivo orthotopic transplantation in a sufficient number of animals. Mice have been a species of choice in which to study stem cell biology in mammals. However, most pulp-dentin complex regeneration studies have used large animals because the mouse tooth is too small. The purpose of this study was to demonstrate the utility of the mouse tooth as a transplantation model for pulp-dentin complex regeneration research. Materials and Methods: Experiments were performed using 7-week-old male Institute of Cancer Research (ICR) mice; a total of 35 mice had their pulp exposed, and 5 mice each were sacrificed at 1, 2, 4, 7, 9, 12 and 14 days after pulp exposure. After decalcification in 5% ethylenediaminetetraacetic acid, the samples were embedded and cut with a microtome and then stained with hematoxylin and eosin. Slides were observed under a high-magnification light microscope. Results: Until 1 week postoperatively, the tissue below the pulp chamber orifice appeared normal. The remaining coronal portion of the pulp tissue was inflammatory and necrotic. After 1 week postoperatively, inflammation and necrosis were apparent in the root canals inferior to the orifices. The specimens obtained after experimental day 14 showed necrosis of all tissue in the root canals. Conclusions: This study could provide opportunities for researchers performing in vivo orthotopic transplantation experiments with mice.

Tracking of Stem Cells from Human Exfoliated Deciduous Teeth Labeled with Molday ION Rhodamine-B during Periodontal Bone Regeneration in Rats

  • Nan Zhang;Li Xu;Hao Song;Chunqing Bu;Jie Kang;Chuanchen Zhang;Xiaofei Yang;Fabin Han
    • International Journal of Stem Cells
    • /
    • v.16 no.1
    • /
    • pp.93-107
    • /
    • 2023
  • Background and Objectives: Chronic periodontitis can lead to alveolar bone resorption and eventually tooth loss. Stem cells from exfoliated deciduous teeth (SHED) are appropriate bone regeneration seed cells. To track the survival, migration, and differentiation of the transplanted SHED, we used super paramagnetic iron oxide particles (SPIO) Molday ION Rhodamine-B (MIRB) to label and monitor the transplanted cells while repairing periodontal bone defects. Methods and Results: We determined an appropriate dose of MIRB for labeling SHED by examining the growth and osteogenic differentiation of labeled SHED. Finally, SHED was labeled with 25 ㎍ Fe/ml MIRB before being transplanted into rats. Magnetic resonance imaging was used to track SHED survival and migration in vivo due to a low-intensity signal artifact caused by MIRB. HE and immunohistochemical analyses revealed that both MIRB-labeled and unlabeled SHED could promote periodontal bone regeneration. The colocalization of hNUC and MIRB demonstrated that SHED transplanted into rats could survive in vivo. Furthermore, some MIRB-positive cells expressed the osteoblast and osteocyte markers OCN and DMP1, respectively. Enzyme-linked immunosorbent assay revealed that SHED could secrete protein factors, such as IGF-1, OCN, ALP, IL-4, VEGF, and bFGF, which promote bone regeneration. Immunofluorescence staining revealed that the transplanted SHED was surrounded by a large number of host-derived Runx2- and Col II-positive cells that played important roles in the bone healing process. Conclusions: SHED could promote periodontal bone regeneration in rats, and the survival of SHED could be tracked in vivo by labeling them with MIRB. SHED are likely to promote bone healing through both direct differentiation and paracrine mechanisms.

A Histo-Pathological Study of Effect on Periodontal Regeneration with Bioabsorbable Membrane on The Grade II Furcation Defects in Beagle Dogs (성견 치근이개부 병소에서 흡수성 차폐막의 치주조직재생에 미치는 영향에 대한 조직병리학적 연구)

  • Kim, Jae-Kwang;Lim, Sung-Bin;Chung, Chin-Hyung;Lee, Chong-Heon
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.1
    • /
    • pp.161-172
    • /
    • 2002
  • The present study evaluated the effects of guided tissue regeneration using xenograft material(deproteinated bovine bone powder), with and without biodegradable membrane in beagle dogs. Contralateral fenestration defects (6 ${\times}$ 4mm) were created 4 mm apical to the buccal alveolar crest of maxillary premolar teeth in 5 beagle dogs. Deproteinated bovine bone powders were implanted into fenestration defect and one randomly covered biodegradable membrane (experimental group). Biodegradable membrane was used to provide GTR. Tissue blocks including defects with soft tissues which were harvested following four & eight weeks healing interval, prepared for histo-phathologic analysis. The results of this study were as follows. 1. In control group, at 4 weeks after surgery, new bony trabecular contacted with interstitial tissue and osteocytes like cell were arranged in new bony trabecule. Bony lamellation was not observed. 2. In control gruop, at 8 weeks after surgery, scar-like interstitial tissue was filled defect and bony trabecule form lamellation. New bony trabecular was contacted with interstitial tissue but defect was not filled yet. 3. In experimental group, at 4 weeks after surgery, new bony trabecular partially recovered around damaged bone. But new bony trabecular was observed as irregularity and lower density. 4. In experimental group, at 8 weeks after surgery, lamella bone trabecular developed around bone cavity and damaged tissue was replaced with dense interstitial tissue. In conclusion, new bone formation regenerated more in experimental than control groups and there was seen observe more regular bony trabecular in experimental than control groups at 4 weeks after surgery. In control group, at 8 weeks after surgery, the defects was filled with scar-like interstitial tissue but, in experimental group, the defects was connected with new bone. Therefore xenograft material had osteoconduction but could not fill the defects. We thought that the effective regeneration of periodontal tissue, could be achieved using GTR with biodegradable membrane.