• 제목/요약/키워드: Tissue scaffolding

검색결과 13건 처리시간 0.019초

Evaluation of polyglycolic acid as an animal-free biomaterial for three-dimensional culture of human endometrial cells

  • Sadegh Amiri;Zohreh Bagher;Azadeh Akbari Sene;Reza Aflatoonian;Mehdi Mehdizadeh;Peiman Broki Milan;Leila Ghazizadeh;Mahnaz Ashrafi;FatemehSadat Amjadi
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제49권4호
    • /
    • pp.259-269
    • /
    • 2022
  • Objective: Animal-free scaffolds have emerged as a potential foundation for consistent, chemically defined, and low-cost materials. Because of its good potential for high biocompatibility with reproductive tissues and well-characterized scaffold design, we investigated whether polyglycolic acid (PGA) could be used as an animal-free scaffold instead of natural fibrin-agarose, which has been used successfully for three-dimensional human endometrial cell culture. Methods: Isolated primary endometrial cells was cultured on fibrin-agarose and PGA polymers and evaluated various design parameters, such as scaffold porosity and mean fiber diameter. Cytotoxicity, scanning electron microscopy (SEM), and immunostaining experiments were conducted to examine cell activity on fabricated scaffolds. Results: The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay and SEM results showed that endometrial cells grew and proliferated on both scaffolds. Immunostaining showed cytokeratin and vimentin expression in seeded cells after 7 days of culture. On both scaffolds, an epithelial arrangement of cultured cells was found on the top layer and stromal arrangement matrix on the bottom layer of the scaffolds. Therefore, fibrin-agarose and PGA scaffolds successfully mimicked the human endometrium in a way suitable for in vitro analysis. Conclusion: Both fibrin-agarose and PGA scaffolds could be used to simulate endometrial structures. However, because of environmental and ethical concerns and the low cost of synthetic polymers, we recommend using PGA as a synthetic polymer for scaffolding in research instead of natural biomaterials.

미더덕껍질의 재생셀룰로오스를 이용한 의료용 섬유의 제조 및 생체적합성 (Preparation and Biocompatibility of Medical Fiber from Novel Regenerated Cellulose from Styela clava tunic)

  • 송성화;김지은;최준영;박진주;이미림;송보람;이예찬;김홍성;이재호;임용;황대연;정영진
    • 한국염색가공학회지
    • /
    • 제30권2호
    • /
    • pp.117-129
    • /
    • 2018
  • Cellulose has been widely applied into various medical fields including scaffolding, tissue engineering and tissue formation. In this study, we manufactured cellulose medical fiber from Styela clava tunics(SCT-CS) and analyzed the tensile strength, elongation at break, fluid uptake and surface morphology. And then, the biocompatibility and toxicity of SCT-CS were measured in Sprague-Dawley(SD) rats after the implantation for 30, 60 and 90 days. The level of tensile strength and fluid uptake were lower in SCT-CS than chromic catgut(CCG), while elongation at break level were maintained the higher in SCT-CS. Also, the roughness with pronounced surface patterns as a result of in vivo degradation was significantly greater in CCG than this of SCT-CS although these levels gradually appeared with time in both groups. After implantation for 90 days, SCT-CS and CCG was successfully implanted around muscle of thigh without any significant immune response. Furthermore, no significant alterations were measured in serum parameters and the specific pathological features induced by most toxic compounds for liver and kidney toxicity. Therefore, these results suggest that SCT-CS showing good biocompatibility and non-toxicity can be successfully prepared from cellulose powder of SCT as well as has the potential for use as a powerful biomaterial for medical sutures.

혈소판유래성장인자-BB가 골간질세포와 치주인대세포의 성상에 미치는 영향 (A study of the effects of PDGF-BB on the characteristics of bone stromal and periodontal ligament cells)

  • 권영혁;박준봉
    • Journal of Periodontal and Implant Science
    • /
    • 제26권4호
    • /
    • pp.949-965
    • /
    • 1996
  • The main goal of periodontal therapy is to restore the lost periodontal tissue and establish the attachment appratus. Current acceptable therapeutic techniques are included : removal of diseased soft tissue, demineralization of exposed root surface, using the barrier membrane for preventing the downgrowth of gingival epithelial cell, insertion of graft materials as a scaffolding action, and biological mediators for promoting the cell activity. The latest concept one among them has been studied which based on the knowledge of cellular biology of destructed tissue. Platelet-derived growth factor(PDGF) is one of the polypeptide growth factor which have been reported as a biological mediator to regulate activities of wound healing progress including cell proliferation, migration, and metabolism. The purposes of this study is to evaluate the influences of the PDGF as biological mediator to periodontal ligament and bone marrow cell. Both right and left maxillary first molar were extracted from rat which had treated with 0.4% ${\beta}-Aminopropionitril$ for 5 days, and feeded until designed date to sacrifice under anesthesisa. Periodontal ligament were removed from the extracted socket of the rat, and cultured with Dulbecco's Modified Essential Medium(DMEM) contained with 10% Fetal Bovine Serum, 100U/ml penicillin, $100{\mu}g/ml$ streptomycin, $0.5{\mu}g/ml$ amphotericin-B. Bone marrow cell were culture from bone marrow suspension with which washed out from femur with same medium. The study was performed to evaluate the effect of PDGF to periodontal ligament and bone cell, cell proliferation rate, total protein synthesis, and alkaline phosphatase activity of rat periodontal ligament(PDL) cell and bone stromal(RBS) cell in vitro. The effects of growth factors on both cells were measured at 3, 5th day after cell culture with (control group) or without growth factors(experimental group). The results were as follows: 1. The tendency of cell proliferation under the influence of PDGF showed more rapid proliferation pattern than control at 3 and 5 days after inoculation. 2. The activity of Alkaline phosphatase revealed 14, 80% increased respectively at 3, 5 days culture than control group. Measurements of ALPase levels indicated that PDL cells had significantly higher activity when compared with that of co-culture groups and GF only(P<0.05). And, ALPase activity in 10 days was higher than that of 7 days(P<0.05). 3. The tendency of formation of the mineralized nodule were observed dose-depend pattern of PDL cells. There was statistically significant difference among group l(PDL 100%), 2(PDL 70%:GF 30%), and 3(PDL 50%:GF 50%)(P<0.01). But, there was no difference among group 3, 4(PDL 30%:GF 70%), and 5(GF 100%). 4. Also, the number of nodule was greater in co-culture of PDL 70% and GF 30% than in culture of PDL 70%(P<0.05). From the above results, it is assumed that the PDGF on PDL cells and RMB cell culture. GF stimulates the cell growth, which is not that of PDL cells but GF. And, the activity of ALPase depends on the ratio of PDL cells, and ALPase may relate to the initial phase of nodule formation. Also, it is thought that the calcified nodule formation principally depends on PDL cells, is inhibited by GF, and affected by cell density. In conclusion, platelet-derived growth factor can promote rapid osteogenesis during early stage of periodontal tissue regeneration.

  • PDF