• 제목/요약/키워드: Tissue repair and regeneration

검색결과 83건 처리시간 0.021초

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.235-248
    • /
    • 2018
  • Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.

Matricellular proteins in immunometabolism and tissue homeostasis

  • Kyoungjun Eun;Ah Young Kim;Seungjin Ryu
    • BMB Reports
    • /
    • 제57권9호
    • /
    • pp.400-416
    • /
    • 2024
  • Matricellular proteins are integral non-structural components of the extracellular matrix. They serve as essential modulators of immunometabolism and tissue homeostasis, playing critical roles in physiological and pathological conditions. These extracellular matrix proteins including thrombospondins, osteopontin, tenascins, the secreted protein acidic and rich in cysteine (SPARC) family, the Cyr61, CTGF, NOV (CCN) family, and fibulins have multi-faceted functions in regulating immune cell functions, metabolic pathways, and tissue homeostasis. They are involved in immune-metabolic regulation and influence processes such as insulin signaling, adipogenesis, lipid metabolism, and immune cell function, playing significant roles in metabolic disorders such as obesity and diabetes. Furthermore, their modulation of tissue homeostasis processes including cellular adhesion, differentiation, migration, repair, and regeneration is instrumental for maintaining tissue integrity and function. The importance of these proteins in maintaining physiological equilibrium is underscored by the fact that alterations in their expression or function often coincide with disease manifestation. This review contributes to our growing understanding of these proteins, their mechanisms, and their potential therapeutic applications.

조직공학적 연골 재생

  • 강선웅;유성필;박정호;김병수
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.48-50
    • /
    • 2002
  • Cartilage defects are common and painful conditions that affect people of all ages. Although many techniques have developed, none of the current available treatment options is satisfactory. Recent advances in biology and materials science have pushed tissue engineering to the forefront of new cartilage repair techniques. The purpose of this study is to determine effective regeneration method for tissue-engineered cartilage. A serum free medium was developed for cartilage tissue engineering. Chondrocyte passage number was found to influence greatly on cartilage tissue formation in vivo. Injectable, biodegradable polymer matrix was developed for chondrocyte transplantation through injection. Transplantation of chondrocytes mixed with the injectable matrices resulted in the cartilage formation in nude mice's subcutaneous sites and rabbit knees. This study may lead to the development of tissue-engineered cartilage appropriate for clinical applications.

  • PDF

Fibrous composite matrix of chitosan/PLGA for tissue regeneration

  • Shim, In-Kyong;Hwang, Jung-Hyo;Lee, Sang-Young;Cho, Hyun-Chul;Lee, Myung-Chul;Lee, Seung-Jin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.237.3-238
    • /
    • 2003
  • Tissue engineering may be adequately defined as the science of persuading the body to regenerate or repair tissue that fail to regenerate or heal spontaneously. In the various techniques of cartilage tissue engineering, the use of 3-dimensional polymeric scaffolds implanted at a tissue defect site is usually involved. These scaffolds provided a framework for cells to attach, proliferate, and form extracellular matrix(ECM). The scaffolds may also serve as carriers for cells and/or growth factors. In the ideal case, scaffold absorb at a predefined rate so that the 3-dimensional space occupied by the initial scaffold is replaced by regenerated host tissue. (omitted)

  • PDF

Hepatocyte Growth Factor and Met: Molecular Dialogue for Tissue Organization and Repair

  • Matsumoto, Kunio;Nakamura, Toshikazu
    • Animal cells and systems
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 1998
  • Hepatocyte growth factor (HGF), originally discovered and cloned as a powerful mitogen for hepatocytes, is a four kringle-containing growth factor which specifically binds to membrane-spanning tyrosine kinase, c-Met/HGF receptor. HGF has mitogenic, motogenic (enhancement of cell movement), morphogenic (e.g., induction of branching tubulogenesis), and anti-apoptotic activities for a wide variety of cells. During embryogenesis, HGF supports organogenesis and morphogenesis of various tissues, including liver, kidney, lung, gut, mammary gland, and tooth. In adult tissues HGF elicits an organotrophic function which supports regeneration of organs such as liver, kidney, lung, and vascular tissues. HGF is also a novel member of neurotrophic factor in nervous systems. Together with the preferential expression of HGF in mesenchymal or stromal cells, and c-Met/HGF receptor In epithelial or endothelial cells, the HGF-Met coupling seems to orchestrate dynamic morphogenic processes through epithelial-mesenchymal (or-stromal) interactions for organogenesis and organ regeneration. HGF or HGF gene may well become unique therapeutic tools for treatment of patients with various organ failure, through its actions to reconstruct organized tissue architectures. This review focuses on recently characterized biological and physiological functions integrated by HGF-Met coupling during organogenesis and organ regeneration.

  • PDF

성견 열개형 수평 결손부에서 Calcium Sulfate 차단막이 치주조직 치유에 미치는 영향 (The Effects of Calcium sulfate Membrane on the Periodontal Wound Repair of Horizontal Dehiscence defects in Dogs)

  • 최성호;조규성;문익상;채중규;김종관
    • Journal of Periodontal and Implant Science
    • /
    • 제27권1호
    • /
    • pp.249-262
    • /
    • 1997
  • The present study investigates the effects of calcium sulfate graft on the periodontal healing in intrabony periodontal defects of dogs. Following the general anesthesia with 30mg/kg pentobarbital injected intravenously, the first premolar was extracted and full-thickness periodontal flap was elevated from the second premolar to the fourth premolar. The portion of premolars coronal to the alveolar crest was removed and mesial and distal roots were separated. Exposed root canals were sealed with Caviton and covered completely with flaps sutured. Following the healing period of 12 weeks, the surgical sited were uncovered and $4{\times}4mm$ intrabony defects were surgically created. Those defects with calcium sulfate graft following the root planing was designated as the test sites and those with flap surgery-only were designated as control sites. The animals were sacrificed after 8 weeks and the healing was histologically analyzed. The results were as follows. 1. No foreign body reaction or inflammation were observed in either groups. Calcium sulfate was completely resorbed in the test sites. 2. New cementum was observed coronal to the notch in both groups. Connective tissue fibers were oriented parallel to the root surface in the controls. Connective tissues were formed in large amount in the sites. 3. Test sites showed marked amount of new bone formation while the control sites showed minimal bone gain. 4. Root resorption was observed in coronal portions of th control Sites. The results suggest that calcium sulfate is a biocompatible graft material with a potential for new bone and cementum formation.

  • PDF

Biomimetic Electrospun Fibers for Tissue Engineering Applications

  • 신흥수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.2.2-2.2
    • /
    • 2011
  • The central strategy in tissue engineering involves a biomaterial scaffold as a delivery carrier of cells and a depot to deliver bioactive molecules. The ability of scaffolds to control cellular response to direct particular repair and regeneration processes is essential to obtain functional tissue engineering constructs. Therefore, many efforts have been made to understand local interactions of cells with their extracellular matrix (ECM) microenvironment and exploit these interactions for designing an ideal scaffold mimicking the chemical, physiological, and structural features of native ECM. ECM is composed of a number of biomacromolecules including proteins, glycosaminoglycans, and proteoglycans, which are assembled together to form complex 3-dimensional network. Electrospinning is a process to generate highly porous 3-dimensional fibrous structure with nano to micro scaled-diameter, which can closely mimic the structure of ECM. In this presentation, our approaches to develop biomimetic electrospun fibers for modulation of cell function will be discussed.

  • PDF

간세포성장인자가 골결손부의 치유에 미치는 영향 (THE EFFECT OF HEPATOCYTE GROWTH FACTOR FOR REPAIR OF THE BONE DEFECT)

  • 신상훈;김창주;김철훈;김용덕;정인교
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제30권5호
    • /
    • pp.380-390
    • /
    • 2004
  • Bone healing plays an important role in orthognathic and craniofacial surgery. Bone tissue repair and regeneration are regulated by an array of growth and morphogenetic factors. Bone formation and remodeling require continuous generation of osteoprogenitor cells from bone marrow stromal cells, which generate and respond to a variety of growth factors with putative roles in hematopoiesis and mesenchymal differentiation. In this study, the efficacy of a single application of hepatocyte growth factor to promote bone regeneration in 5-mm experimental calvarial defects of adult male rats was assessed histologically and immunohistochemically. The result of the experimental site were compared with those of the contralateral contral side. None of the control and experimental bone defects demonstrated complete bone closure. Bone regeneration was found close th the margine and central part of the defects. At 1, 2 weeks, there were found much significant cellural mitotic activity and many inflammatory cells and osteoblasts on the experimental site than control site. At 4, 6 weeks, new bone apposition was founded in both site but, more apposition was seen at experimental site. At 8, 12 weeks, also, some differences was found that more apposition of new bone and collagen fiber was seen on experimental site. Our results have some possibility that HGF do a early positive role to repair the bone defect. More study will be needed.

전기자극이 정상 치주조직에 미치는 영향 (EFFECTS OF ELECTRICAL STIMULATION ON THE NORMAL PERIODONTIUM)

  • 임경석;권영혁;이만섭;박준봉
    • Journal of Periodontal and Implant Science
    • /
    • 제32권1호
    • /
    • pp.89-112
    • /
    • 2002
  • The earliest reports of the use of electrical energy to directly stimulate bone healing seem to be in 1853 from England, the techniques involved the introduction of direct current into the non-united fracture site percutaneously via metallic needles, with subsequent healing of the defect. One endpoint of the periodontal therapy is to generate structure lost by periodontal diseases. Several procedural advances may support regeneration of attachment, however, regeneration of alveolar bone does not occur consistently. Therefore, factors which stimulate bone repair are areas for research in periodontal reconstructive therapy. Effects of cytokines or growth factors on bone repair are examples of such areas. Another one is electrical current which occurs in bone naturally, so that such bone may be particularly susceptible to electrical therapy. The purposes of this study were to observe the effects of electrical stimulation on the normal periodontium, to determine whether the electricity is the useful means for periodontal regeneration or not. Forty rats weighted about 100 gram were used and divided into 4 groups, the first group, there was no electrical stimulation with the connection of electrodes only. In the second group, there was stimulated by the 10 mA during 10 minutes per a day, in the third group was stimulated by the 25 mA , and the fourth by the 50 mA. At 3, 5, 10 and 15 days post-appliance , two rats in each group were serially sacrificed. and the maxillae and the mandible processed to paraffin, and the specimens were prepared with Hematoxylin-Eosin stain for the light microscopic evaluation. The results of this study were as follows : 1. There was the distinct reversal line on the lingual alveolar crest, whereas a little changes in the labial alveolarcrest to the duration and amount of currents. 2. In 50 mA group, the cells were highly concentrated at the apex of anterior teeth, and was observed the necrotic tissue. In posterior root apex, the hypercementosis was appeared, and newly formed cementum layer has been increased continuously with the time. 3. The periodontal ligament fiber and Sharpey's fiber were arranged in order, and the bone trabeculae were increased as the experiment proceeded by, relatively the bone marrows were decreased. 4. In the pulp tissue, the blood vessels were increased with blood congestion in the experimetal specimens remarkably, and the dentinal tubules were obstructed . 5. The osteoblasts in alveolar bone proper had been showed highly activity, and also observed the formation of bone trabeculea. In the conclusion, it was suggested that the electrical stimulation has influence on the periodontium and the pulp tissue. However, there might be the injurious effects.

The role of extracellular biophysical cues in modulating the Hippo-YAP pathway

  • Mo, Jung-Soon
    • BMB Reports
    • /
    • 제50권2호
    • /
    • pp.71-78
    • /
    • 2017
  • The Hippo signaling pathway plays an essential role in adult-tissue homeostasis and organ-size control. In Drosophila and vertebrates, it consists of a highly conserved kinase cascade, which involves MST and Lats that negatively regulate the activity of the downstream transcription coactivators, YAP and TAZ. By interacting with TEADs and other transcription factors, they mediate both proliferative and antiapoptotic gene expression and thus regulate tissue repair and regeneration. Dysregulation or mutation of the Hippo pathway is linked to tumorigenesis and cancer development. Recent studies have uncovered multiple upstream inputs, including cell density, mechanical stress, G-protein-coupled receptor (GPCR) signaling, and nutrients, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway as effector of these biophysical cues and its potential implications in tissue homeostasis and cancer.