• Title/Summary/Keyword: Tissue paper

Search Result 659, Processing Time 0.032 seconds

The study on Biomaterial Properties using the Optical Coefficient (광학계수를 이용한 생체물질의 특성에 관한 연구 (암조기진단을 위한 전단장치의 개발을 위한 기초연구))

  • 임현수;김부길;두재균
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.115-121
    • /
    • 1998
  • In this paper, basic study of diagnostic device development for early detection of cancer, we present the optical property measurements of 12 histologically classified biological tissue and blood specimens in order to determine whether significant optical contrast exists for detection of disease(cancer). In vitro, optical properties of each 630nm, 660nm, 780n, 880nm and 940nm shows consistent changes in effective absorbtion coefficients, ${\mu}$$\_$${\alpha}$/ with tissue classification of pig an chicken and human blood according to the 27.3%, 35.4%, 45.6% and 59.1% of HCT. We found differences in optical properties at each of specific wavelengths and histologically classified biological tissue.

  • PDF

Research on Subcutaneous Pulse Shape Measurement by Near-infrared Moiré Technique

  • Chen, Ying-Yun;Liu, Zhizhen;Du, Jian;Chang, Rong-Seng
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.123-129
    • /
    • 2015
  • A pulse is generated when the heart pumps blood into the arterial system. The heart pumps blood only when it contracts, not when it relaxes; therefore, blood enters the arterial system in a cyclical form. Artery beating is visible in some parts of the body surface, such as the radial artery of the wrist. This paper mainly uses the feature in which near-infrared spectroscopy penetrates skin to construct a non-invasive measurement system that can measure small vibration in the subcutaneous tissue of the human body, and then uses it for the pulse measurement. This measurement system uses the optical moir$\acute{e}$ principle, together with the fringe displacement made by small vibration in the subcutaneous tissue, and an image analysis program to calculate the height variation from small vibrations in the subcutaneous tissue. It completes a measurement system that records height variation with time, and that together with a fast Fourier transform (FFT) program, they can convert the pulse waveform generated by vibration (time-amplitude) to heartbeat frequency (frequency-amplitude). This is a new and non-invasive medical assistance system for measuring the pulse of the human body, with the advantages of being simple, fast, safe and objective.

Simulation of photon propagation for transcutaneous optical communication (피부투과 광통신을 위한 세포내 광진행 시뮬레이션)

  • Lee, J.J.;Kim, W.E.;Lee, J.H.;Choi, J.H.;Ahn, J.M.;Choi, W.W.;Park, S.K.;Choi, J.S.;Kim, H.C.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.65-67
    • /
    • 1996
  • Optical property of tissue is characterized by its high scattering of light. In near infrared range$(800{\sim}1200nm)$ scattering is dominant than absorption. Communication using NIR through tissue is applicable to immplantable device. In this paper, simulation of unit impulse response of light in tissue is carried out to estimate the amplitude, phaselength and phaselength deviation.

  • PDF

Medical Ultrasonic Elasticity Imaging Techniques (의료용 초음파탄성영상법)

  • Jeong, Mok-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.573-584
    • /
    • 2012
  • Breast and prostate tumors or cancers tend to be stiffer than the surrounding normal tissue. However, the difference in echogenicity between cancerous and normal tissues is not clearly distinguishable in ultrasound B-mode imaging. Thus, imaging the stiffness contrast between the two different tissue types helps to diagnose lesions quantitatively, and such a method of imaging the elasticity of human tissue is termed ultrasound elasticity imaging. Recently, elasticity imaging has become an effective complementary diagnostic modality along with ultrasound B-mode imaging. This paper presents various elasticity imaging methods that have been reported up to now and describes their characteristics and principles of operation.

Review Article Fingertip Replantation (수지첨부 접합수술)

  • Hahn, Hyun Oun
    • Archives of Reconstructive Microsurgery
    • /
    • v.20 no.2
    • /
    • pp.132-138
    • /
    • 2011
  • Although finger tip replantation is popularized nowadays, it is not easy operations even for experienced surgeons. The indication for replantation to treat fingetip amputation is still controversial, but I think replantation for function and cosmetic absolute indication. This paper will discuss about methods of fingertip replantation and unexpected complications on soft tissue after operation.

  • PDF

2-D OCT image implementation using low coherence SLD (Low coherence 특성의 SLD를 이용한 2차원 OCT 영상 구현)

  • 정태호;박양하;오상기;김용평
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.290-291
    • /
    • 2003
  • Optical Coherence Tomography is a new medical dianostic imaging technology which can perform micron resolution cross-sectional or tomograpic imaging in biological tissue. In this paper, we analyze OCT system. And we have 2-dimensional OCT image implementation using low coherence SLD.

  • PDF

An Optimized Mass-spring Model with Shape Restoration Ability Based on Volume Conservation

  • Zhang, Xiaorui;Wu, Hailun;Sun, Wei;Yuan, Chengsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1738-1756
    • /
    • 2020
  • To improve the accuracy and realism of the virtual surgical simulation system, this paper proposes an optimized mass-spring model with shape restoration ability based on volume conservation to simulate soft tissue deformation. The proposed method constructs a soft tissue surface model that adopts a new flexion spring for resisting bending and incorporates it into the mass-spring model (MSM) to restore the original shape. Then, we employ the particle swarm optimization algorithm to achieve the optimal solution of the model parameters. Besides, the volume conservation constraint is applied to the position-based dynamics (PBD) approach to maintain the volume of the deformable object for constructing the soft tissue volumetric model base on tetrahedrons. Finally, we built a simulation system on the PHANTOM OMNI force tactile interaction device to realize the deformation simulation of the virtual liver. Experimental results show that the proposed model has a good shape restoration ability and incompressibility, which can enhance the deformation accuracy and interactive realism.

Tissue-Specific Expression of Nebulin Isoform Proteins in Chicken (닭 조직에 따른 Nebulin Isoform 단백질의 특이적 발현)

  • 김영희;김정락
    • Biomedical Science Letters
    • /
    • v.6 no.3
    • /
    • pp.171-179
    • /
    • 2000
  • The lengths of thick and thin filaments in the sarcomeres of most vertebrate skeletal muscles are precisely regulated and are important structural parameters in understanding muscle contraction. Nebulin is a usually large protein that spans the whole length of thin filaments in the sarcomeres of skeletal muscles. In this paper we used SDS-PAGE and immunoblot to identify nebulin isoform proteins in muscle and non-muscle tissues. We prepared embryonic chicken tissues including skeletal muscle, cardiac muscle, smooth muscle, brain, liver to compare nebulin isoform proteins. The proteins were divided into soluble and insoluble fraction. As a result, we identified tissue specific expression of various nebulin isoform proteins in muscle and non-muscle tissues of chicken. Nebulin was detected in skeletal muscle of adult chicken about 500 kDa. Nebulett was expressed in cardiac muscle of embryonic and adult chicken about 107 kDa. A giant protein with molecular mass of about 380 kDa was identified in brain of non-muscle of chicken. This giant protein was detected in the soluble fraction of chicken embryo. The unequal distribution of the nebulin isoform proteins suggests tissue specific regulation of the isoform expression and indicates a functional specialization of the encoded isoform subtypes.

  • PDF

Advanced peri-implantitis cases with radical surgical treatment

  • McCrea, Shane J.J.
    • Journal of Periodontal and Implant Science
    • /
    • v.44 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • Purpose: Peri-implantitis, a clinical term describing the inflammatory process that affects the soft and hard tissues around an osseointegrated implant, may lead to peri-implant pocket formation and loss of supporting bone. However, this imprecise definition has resulted in a wide variation of the reported prevalence; ${\geq}10%$ of implants and 20% of patients over a 5- to 10-year period after implantation has been reported. The individual reporting of bone loss, bleeding on probing, pocket probing depth and inconsistent recording of results has led to this variation in the prevalence. Thus, a specific definition of peri-implantitis is needed. This paper describes the vast variation existing in the definition of peri-implantitis and suggests a logical way to record the degree and prevalence of the condition. The evaluation of bone loss must be made within the concept of natural physiological bony remodelling according to the initial peri-implant hard and soft tissue damage and actual definitive load of the implant. Therefore, the reason for bone loss must be determined as either a result of the individual osseous remodelling process or a response to infection. Methods: The most current Papers and Consensus of Opinion describing peri-implantitis are presented to illustrate the dilemma that periodontologists and implant surgeons are faced with when diagnosing the degree of the disease process and the necessary treatment regime that will be required. Results: The treatment of peri-implantitis should be determined by its severity. A case of advanced peri-implantitis is at risk of extreme implant exposure that results in a loss of soft tissue morphology and keratinized gingival tissue. Conclusions: Loss of bone at the implant surface may lead to loss of bone at any adjacent natural teeth or implants. Thus, if early detection of peri-implantitis has not occurred and the disease process progresses to advanced peri-implantitis, the compromised hard and soft tissues will require extensive, skill-sensitive regenerative procedures, including implantotomy, established periodontal regenerative techniques and alternative osteotomy sites.

Electron Microscopic Study of Osseointegration between Bone and Smooth Machined Implants (선반가공 임플란트와 골조직의 유착에 관한 전자현미경적 연구)

  • Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.34 no.4
    • /
    • pp.277-283
    • /
    • 2004
  • This paper reports that the ultrastructural nature of the interface process between the implants and surrounding bone has been studied after in vivo 1, 4, 8, 12 weeks of implantation of smooth machined implants into rabbit tibias. There was no indication of the fibrous connective tissue formation around the implant that imply intolerance of the bone tissue towards the implant after 1 week of implantation. The regions showing direct bone tissue bonding to the smooth machined implant contained osteoblast activating across the interface in the direction after 4 weeks of implantation. The reaction of a smooth machined implant caused in the first instance formation of an amorphous woven bone, which transformed into a mineralized bone containing collagen fibers. After 8 weeks of implantation, the activities of osteoblast initiated osseointegration forming bone matrix at the interface. During this period, the osteoblast surrounded with a matrix consisting of collagen bundles running in various directions. In the interface area between newly formed bone tissue and implants which has been inserted in rabbit tibias for 12 weeks, the implant and mineralized bone was separated by an amorphous electron dense material layer about $1{\sim}1.5{\mu}m$ in thickness.