• Title/Summary/Keyword: Tissue formation

Search Result 1,688, Processing Time 0.024 seconds

Bone Formation by rhBMP-7 Transduced HEK 293 Cells in Nude Mouse (재조합 BMP-7 유전자가 전달된 HEK 293 세포에 의한 누드 마우스에서의 뼈형성)

  • Jeong, Su-Yon;Chang, Won-Tae;Chang, Yon-Sil;Ahn, Myun-Hwan;Kim, Jae-Ryong;Song, In-Hwan
    • Journal of Yeungnam Medical Science
    • /
    • v.20 no.2
    • /
    • pp.142-151
    • /
    • 2003
  • To induce bone formation at ectopic site by tissue engineering and gene therapy, we transplanted collagen sponges containing rhBMP-7 transduced HEK 293 cells in the hypodermis of nude mice. Bone formation was investigated by histological and electron microscopic method at 3, 6, and 9 weeks after transplantation. At 9 weeks after transplantation, eosinophilic bony tissue was observed in the implanted collagen sponge and was confirmed as bone tissue by Von Kossa stain. In the transmission electron microscopic observation, the cells in newly formed bone tissue had eccentrically located nucleus and well developed rough endoplasmic reticulum (rER). Therefore, the cells were evaluated as osteoblasts. Those results suggest that it is possible to form a bone tissue in the ectopic site by transplantation of rhBMP-7 transduced HEK 293 cells. This will be contributed to push more advanced gene therapy for bone formation. However, the HEK 293 cell is unable to apply to the clinical gene therapy. Therefore it is worth to find more compatible cells for clinical application. In addition, collagen sponge is considered as an excellent scaffold and/or carrier for gene therapy and a good biomaterial for tissue engineering.

  • PDF

Periodontal repair in dogs: effect of the modified calcium sulfate paste on the 1-wall intrabony defects (성견 1면 치조골 결손부에서 특수제조된 Calcium Sulfate Paste가 치주조직 치유에 미치는 영향)

  • Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.153-171
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of modified calcium sulfate paste on periodontal regeneration. l-wall intrabony defect(mesio-distal width: 4mm, depth: 4mm) was surgically created on the distal side of P2 and mesial side of p4 in four dogs. The control group(GFS) was treated with conventional flap operation alone, and the experimental group(CS) was treated with conventional flap operation with modified calcium sulfate paste application. Both control and experimental groups were sacrificed after 8weeks of healing period, The results of histological and histometric observations were as follows. 1. The length of the junctional epithelium was 0.41${\pm}$0.01mm in the control groups, 0.47${\pm}$0.01mm in the experimental group. 2. The connective tissue attachment was 0.28${\pm}$0.02mm(6.15${\pm}$0.28%) in the control group, 0.18${\pm}$0.01mm(3.41${\pm}$0.14%) in the experimental group. The control group showed more connective tissue attachment. 3. The new cementum formation was 3.80${\pm}$0.06mm(84.80${\pm}$0.33%) in the control group, 4.49${\pm}$0.06mm(87.57${\pm}$0.15%) in the experimental group. Both groups showed a lot of new cementum formation. 4. The new bone formation was 1.43${\pm}$0.03mm(32.37%) in the control group, 2.04${\pm}$O.09mm(40.94%) in the experimental group. 5. The inflamatory cells were observed partially around resorbed calcium sulfate in the connective tissue of the experimental group. 6. Partially resorbed calcium sulfate were found within the connective tissue, around alveolar bone, and in the newly formed alveolar bone, On the basis of these results, newly formed calcium sulfate paste enhanced new bone formation and new cementum formation. The resorption rate of calcium sulfate seems to be controlled by the add-in compounds. Thus research about biocompatibility and adequate resorptionrate is required to develop a improved material.

  • PDF

REGENERATIVE CAPACITY OF DEMINERALIZED BONE GRAFT AND GUIDED TISSUE REGENERATION ON DEHISCED ALVEOLAR BONE ADJACENT TO DENTAL IMPLANT (탈회이식골과 유도조직재생용 차폐막이 인공치아 매식채 주위의 골열개창 치유에 미치는 효과)

  • Chung, Kyeong-Uk;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.341-356
    • /
    • 1995
  • The purpose of this study was to evaluate the effect of demineralized freeze dried bone and demineralized bone gel with guided tissue regeneration treatment around titanium implants with dehisced bony defects and also evaluate space maintaining capacity of demineralized bone gel type and DFDB powder type under e-PTFE membrane. In 3 Beagle dogs, mandibular premolar was extracted and four peri-implant osteotomies were formed for dehiscence. After insertion of implants, the four peri-implant defects were treated as follows. 1) In control group. no graft material and barrier membrane were applied. 2) In experimental group.1, the site was covered only with the e-PTFE membrane. 3) In experimental group 2,received DFDB powder and covered by the e-PTFE membrane. 4) In experimental group 3, demineralized bone gel and e-PTFE membrane were used. By random selection, animals were sacrificed at 4, 8, 12 weeks. The block sectioned specimens were prepared for decalcified histologic evaluation(hematoxylin and eosin staining) and undecalcified histologic evahiation(Von Kossa's and toluidine blue staining) with light microscopy. The results of this study were as follows. 1) In control group, there was a little new bone formation and connective tissue was completely filled in the defect area. 2) Experimental group 1 showed lesser quantity of bone formation as compared to the bone grafted group. Thin vertical growth of new bone formation around implant fixture was shown. 3) Experimental group 2 showed thick bucco-lingual growth of new bone formation and grafted bone particles were almost resorbed in 12 week group. 4) In experimental group 3, most grafted bone particles were not resorbed in 12 week group and thick bucco-lingual bone formation was shown in dehisced defect base area. 5) There was no remarkable differences in space making capacity and new bone formation procedure between demineralized freeze-dried bone powder type and demineralized bone gel type.

  • PDF

The Effects of GamiTakliSodocyum on Wound Healing (加味托里消毒飮이 瘡傷 治癒에 미치는 影響)

  • Seo, Hyung-Sik;Roh, Seok-Seon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.14 no.2
    • /
    • pp.89-111
    • /
    • 2001
  • In order to investigate the effects of GamiTakliSodocyum(GTS) on wound healing, migration of epidermis, formation of granulation tissue and number of capillary within the granulation tissue were measured in diabetic mice by local application and NZW rabbits by local application and prescription of medicine in vivo, and proliferation of human epidermal keratinocytes and human dermal fibroblasts and composition of extracellular matrix were measured in vitro. The results were summerized as follows. 1. $2\%,\;10\%$ GTS remarkably increased migration of epidermis in diabetic mice by local application. 2. $2\%,\;10\%$ GTS remarkably increased formation of granulation tissue, number of neovascularization within the granulation tissue in diabetic mice by local application. 3. 5\%,\;10\%$ GTS remarkably increased migration of epidermis in NZW rabbits by local application. 4. $5\%,\;10\%$ GTS remarkably increased fonnation of granulation tissue, number of neovascularization within the granulation tissue in NZW rabbits by local application. 5. $5\%,\;10\%$ GTS increased migration of epidennis in NZW rabbits by prescription of medicine. 6. $5\%,\;10\%$ GTS increased formation of granulation tissue, number of neovascularization within the granulation tissue in NZW rabbits by prescription of medicine. 7. GTS didn't show effect on the proliferation of human epidermal keratinocytes. 8. GTS increased the proliferation of cultured human dermal fibroblasts. 9. GTS increased the expression of procoliagen ${\alpha}1(I) mRNA in cultured human dermal fibroblasts. 10. GTS increased the expression of fibronectin mRNA in cultured human dennal fibroblasts according to dosage of GTS using northern blot hybridization but didn't increase, using RT-PCR. From the above results, it is conclude that GTS might use on wound healing.

  • PDF

BONE FORMATION USING INJECTABLE TISSUE-ENGINEERING MATERIALS (주사형 조직공학재료를 이용한 골형성)

  • Choi, Byung-Ho;Park, Dong-Joon;Zhu, Shi-Jiang;Huh, Jin-Young;Kim, Byung-Young;Lee, Seoung-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.6
    • /
    • pp.374-378
    • /
    • 2003
  • Aim : Several injectable materials have been used in the application of osteogenic bone substitute; however, nothing has won universal acceptance. This study was performed to investigate whether chitosan-alginate gel/MSCs/BMP-2 composites are potentially injectable materials for new bone formation. Material and Methods : The composites were injected into the subcutaneous space on the dorsum of the nude mouse to investigate whether new bone would be tissue engineered in the mouse. The composites were examined histologically over a 12-week period. Results : The composites implanted in the mouse were able to tissue engineer new bone, and the newly formed bone consisted of trabecular bone and calcified bone matrix. Conclusions : The present study shows that chitosan-alginate gel/MSCs/BMP-2 composites have the potential to become real injectable materials for new bone formation.

THE EFFECT OF GLASS IONOMER CEMENT ON THE DOG'S EXPOSED DENTAL PULP (글라스 아이오노머 세멘트가 가견(家犬) 노출(露出) 치수조직(齒髓組織)에 미치는 영향(影響))

  • Kim, Jae-Han;Cho, Kyew-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 1987
  • The present study was designed to help elucidate the effect of glass ionomer cements on the exposed dental pulp by means of histologic examination. A total of 40 cavities of class V were prepared on the teeth of 4 dogs with exposure of 1mm in diameter on the bases of them. 20 cavities were filled with glass ionomer cement as the experimental group and the other 20 cavities were filled with zinc oxide eugenol cement as the control group. The dogs were sacrificed at one, two, three, and four weeks after filling, and the specimens were routinely prepared and stained with Hematoxylin-Eosin. The obtained microscopic findings were as follows: Inflammatory cell infiltrations were observed in control in 1 week, which decreased markedly with time. In all control groups, hemorrhage around exposed pulp tissue and coagulation change of pulp were observed. Secondary dentin formation and thickened predentin were observed in 4 week cases, and the recovery of pulp tissue was favorable on the whole. Inflammatory cell infiltration was observed in all GIC groups. Proliferation of blood vessel and congestion were observed with coagulation changes around the exposed pulp tissue. Secondary dentin formation and thickened predentin were observed in 3 weeks. In the experimental 4 week case, secondary dentin formation was evident. On the whole, pulpal irritation of glass ionomer cement was relatively severe. Recovery of pulp tissue in GIC groups was less favorable compared with that of ZOE groups.

  • PDF

Polymer brush: a promising grafting approach to scaffolds for tissue engineering

  • Kim, Woonjung;Jung, Jongjin
    • BMB Reports
    • /
    • v.49 no.12
    • /
    • pp.655-661
    • /
    • 2016
  • Polymer brush is a soft material unit tethered covalently on the surface of scaffolds. It can induce functional and structural modification of a substrate's properties. Such surface coating approach has attracted special attentions in the fields of stem cell biology, tissue engineering, and regenerative medicine due to facile fabrication, usability of various polymers, extracellular matrix (ECM)-like structural features, and in vivo stability. Here, we summarized polymer brush-based grafting approaches comparing self-assembled monolayer (SAM)-based coating method, in addition to physico-chemical characterization techniques for surfaces such as wettability, stiffness/elasticity, roughness, and chemical composition that can affect cell adhesion, differentiation, and proliferation. We also reviewed recent advancements in cell biological applications of polymer brushes by focusing on stem cell differentiation and 3D supports/implants for tissue formation. Understanding cell behaviors on polymer brushes in the scale of nanometer length can contribute to systematic understandings of cellular responses at the interface of polymers and scaffolds and their simultaneous effects on cell behaviors for promising platform designs.

The Effects of various Regeneration techniques on Bone Regeneration around Dental Implant (수종의 재생 술식 시행이 매식체 근원심부의 골재생에 미치는 영향)

  • Lee, Myung-Ja;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.383-399
    • /
    • 2005
  • The successful implantation necessitate tissue regeneration m site of future implant placement, there being severe bone defect. Therapeutic approaches to tissue regeneration in the site have used bone grafts, root surface treatments, barrier membranes, and growth factors, the same way being applied to periodontal tissue regeneration. Great interest in periodontal tissue regeneration has lead to research in bone graft, guided-tissue regeneration, and the administration of growth factors as possible means of regenerating lost periodontal tissue. The blood component separated by centrifuging the blood is the platelet-rich plasma. There are growth factors, PDGF, $TGF{beta}1$, $TGF{beta}2$ and IGF in the platelet-rich plasma. The purpose of this study was to study the histopathological correlation between the use of platelet-rich plasma and the healing of bone defect around implant fixture site. Implant fixtures were inserted and graft materials were placed into the left femur of in the experimental group, while the control group received only implant fixtures. In the first experimental group, platelet-rich plasma and BBP xenograft were placed at the implant fixture site, and the second experimental group had platelet-rich plasma, BBP xenograft, and the e-PTFE membrane placed at the fixture site. The degree of bone regeneration adjacent to the implant fixture was observed and compared histopathologically at 2, 4, and 8 weeks after implant fixture insertion. The results of the experiment were as follows: 1. Bone remodeling in acid etched surface near the implant fixture of all experimental groups was found to be greater than new bone formation. 2. Bone remodeling in acid etched surface distant to the implant fixture of all experimental groups was decreased and new bone formation was not changed. 3. Significant new bone formation in machined surface near the implant fixture of bothl experimental groups was observed in 2 weeks. 4. New bone formation in machined surface distant to the implant fixture of both experimental groups was observed. Bone remodeling was significant in near the implant fixture and not in distant to the implant fixture. The results of the experiment suggested that the change of bone formation around implant. Remodeling in machined surface distant to the implant fixture of both experimental groups, and new bone formation and remodeling near the implant fixture were significant.

New conceptual approaches toward dentin regeneration using the drug repositioning strategy with Wnt signaling pathways

  • Lee, Eui-Seon;Kim, Tae-Young;Aryal, Yam Prasad;Kim, Kihyun;Byun, Seongsoo;Song, Dongju;Shin, Yejin;Lee, Dany;Lee, Jooheon;Jung, Gilyoung;Chi, Seunghoon;Choi, Yoolim;Lee, Youngkyun;An, Chang-Hyeon;Kim, Jae-Young
    • International Journal of Oral Biology
    • /
    • v.46 no.2
    • /
    • pp.67-73
    • /
    • 2021
  • This study summarizes the recent cutting-edge approaches for dentin regeneration that still do not offer adequate solutions. Tertiary dentin is formed when odontoblasts are directly affected by various stimuli. Recent preclinical studies have reported that stimulation of the Wnt/β-catenin signaling pathway could facilitate the formation of reparative dentin and thereby aid in the structural and functional development of the tertiary dentin. A range of signaling pathways, including the Wnt/β-catenin pathway, is activated when dental tissues are damaged and the pulp is exposed. The application of small molecules for dentin regeneration has been suggested as a drug repositioning approach. This study reviews the role of Wnt signaling in tooth formation, particularly dentin formation and dentin regeneration. In addition, the application of the drug repositioning strategy to facilitate the development of new drugs for dentin regeneration has been discussed in this study.

Therapeutic Intervention of Aggregate Formation in Huntington's Disease: A Potential Role of Tissue Transglutaminase (tTG)

  • Chun, Wan-Joo
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.65-66
    • /
    • 2003
  • The cause of Huntington's disease (HD) is a pathological expansion of the polyglutamine domain within the N-terminal region of huntingtin. Neuronal aggregates composed of mutant huntingtin within certain neuronal populations are a characteristic hallmark of HD. Because tissue transglutaminase (tTG) cross-links proteins into aggregates and polypeptide-bound glutamines are primary determining factors for tTG-catalyzed reactions, it has been hypothesized that tTG may contribute to the formation of aggregates. (omitted)

  • PDF