• Title/Summary/Keyword: Tissue factor Inhibitor

Search Result 127, Processing Time 0.03 seconds

Effect of globular adiponectin on interleukin-6 and interleukin-8 expression in periodontal ligament and gingival fibroblasts

  • Park, Hong-Gyu;Bak, Eun-Jung;Kim, Ji-Hye;Lee, Yang-Sin;Choi, Seong-Ho;Cha, Jeong-Heon;Yoo, Yun-Jung
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.3
    • /
    • pp.149-156
    • /
    • 2011
  • Purpose: Globular adiponectin (gAd) is a type of adipocytokine, which is mainly produced by adipose tissue. It has been reported that gAd acts as a pro- as well as an anti-inflammatory factor. Interleukin (IL)-6 and IL-8 are pro-inflammatory cytokines. To investigate the role of gAd on periodontal tissues, the expression of adiponectin receptor 1 (AdipoR1) and the effect of gAd on the expression of IL-6 and IL-8 were investigated in periodontal ligament (PDL) and gingival fibroblasts. Methods: PDL and gingival fibroblasts were cultured from human periodontal tissues. gAd derived from Escherichia coli and murine myeloma cells were used. The expression of AdipoR1 was estimated by reverse transcription-polymerase chain reaction and western blot The expression of cytokines was measured by enzyme-linked immunosorbent assay. Results: PDL and gingival fibroblasts expressed both mRNA and protein of AdipoR1. gAd derived from E. coli increased the production of IL-6 and IL-8, but polymyxin B, an inhibitor of lipopolysaccharide (LPS), inhibited IL-6 and IL-8 production induced by gAd in both types of cells. gAd derived from murine myeloma cells did not induce IL-6 and IL-8 production in those cells. gAd derived from E. coli contained higher levels of LPS than gAd derived from murine myeloma cells. LPS increased production of IL-6 and IL-8 in PDL and gingival fibroblasts, but pretreatment of cells with gAd derived from murine myeloma cells did not inhibit LPS-induced IL-6 and IL-8 expression. Conclusions: Our results suggest that PDL and gingival fibroblasts express AdipoR1 and that gAd does not act as a modulator of IL-6 and IL-8 expression in PDL and gingival fibroblasts.

Combined Treatment of Activin A and Heparin Binding-EGF (HB-EGF) Enhances In Vitro Production of Bovine Embryos

  • Kim, Se-Woong;Jung, Yeon-Gil;Park, Jong-Im;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.29 no.2
    • /
    • pp.127-132
    • /
    • 2014
  • This study was carried out to investigate the effects of tissue inhibitor of matalloproteinase-1 (TIMP-1), Activin A and Heparin binding epidermal growth factor (HB-EGF) on in vitro production of bovine embryos. In experiment 1, presumptive zygotes were cultured in the medium supplemented with TIMP-1 ($0.5{\mu}g/ml$), Activin A (100 ng/ml), or HB-EGF (100 ng/ml) at $39^{\circ}C$ in a humidified atmosphere of 5% (v/v) $CO_2$, 5% (v/v) $O_2$ and 90% (v/v) $N_2$. In experiment 2, TIMP-1 + HB-EGF or Activin A + HB-EGF combinations were supplemented in the culture medium. The developmental rate to blastocysts, hatching rate and total cell numbers of the blastocysts were evaluated in both experiments. The embryos cultured in medium without growth factor supplementation was used as control group. In experiment 1, the embryos cultured in medium supplemented with TIMP-1 and Activin A showed significantly higher developmental rate to blastocysts than those cultured with HB-EGF and control (36.9%, 34.1%, 21.2% and 23.1%, respectively) (P<0.0001). However, the hatching rate of blastocyst was significantly higher in embryos with HB-EGF than those with TIMP-1, Actvin A and Control groups (84.4%, 58.8%, 51.4% and 49.3%, respectively) (P<0.001). Total cell number per blastocyst was also significantly higher in embryos with HB-EGF group ($174.3{\pm}2.5$) than those with TIMP-1, Activin A (149.7 and 150.0, respectively) (P<0.05) and Control (119.0) (P<0.001). In experiment 2, embryos cultured with combined treatment of Activin A and HB-EGF resulted in significantly higher rates of blastocysts formation (48.0%), hatching rate (89.7%) and total cell number in blastocyst ($182.3{\pm}2.1$) than those with TIMP-1 and HB-EGF combination group (32.0%, P<0.001; 76.6%, P<0.05; $165.7{\pm}4.2$, P<0.001, respectively). Our data demonstrate that in vitro production of bovine embryos could be improved by combined supplementation of Activin A and HB-EGF in culture medium.

Alteration of Stress Fiber in Fibroblastic Reticular Cells via Lymphotoxin β Receptor Stimulation is Associated with Myosin (Lymphotoxin β 수용체를 통한 fibroblastic reticular cell의 stress fiber 변화와 myosin의 연관성)

  • Kim, Min Hwan;Kim, Yeon Hee;Choi, Woobong;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.585-593
    • /
    • 2015
  • Stress fiber (SF) alteration is mediated by cellular receptors, which, upon interaction with the extracellular counterpart, signal to the actin cytoskeleton for remodeling. This association is mediated by a variety of scaffold and signaling factors, which control the mechanical and signaling activities of the interaction site. The heterotrimeric transmembrane lymphotoxin α1β2 (LTα1β2), a member of the tumor necrosis factor (TNF) family of cytokines, including soluble homotrimeric lymphotoxin (LT α), plays an important role in lymphoid tissue architecture. Ligation between LTα1β2 and the lymphotoxin β receptor (LTβR) activates signal-cascade in fibroblastic reticular cells (FRCs). We found LTβR stimulation using an agonistic anti-LTβR antibody alone or combined with LTα or TNFα induced changes in the actin and plasticity of cells. To clarify the involvement of myosin underlying the alteration, we analyzed the effect of myosin light chain kinase (MLCK) with an MLCK inhibitor (ML7), the phosphorylation level of myosin light chains (MLC), and the level of phospho-myosin phosphatase target subunit 1 (MYPT1) after treatment with an agonistic anti-LTβR antibody for cytoskeleton reorganization in FRCs. The inhibition of MLCK activity induced changes in the actin cytoskeleton organization and cell morphology in FRC. In addition, we showed the phosphorylation of MLC and MYPT1 was reduced by LTβR stimulation in cells. A DNA chip revealed the LTβR stimulation of FRC down-regulated transcripts of myosin and actin components. Collectively, these results suggest LTβR stimulation is linked to myosin regarding SF alteration in FRC.

Protective Effects of Chrysanthemi Indici Flos Extract and Flaxseed Oil Mixture on HCl/ethanol-induced Acute Gastric Lesion Mice (급성 위염 동물 모델에서 감국(甘菊) 추출물과 아마인유(亞麻仁油) 혼합물의 위 점막 보호 효과)

  • Lee, Jin A;Kim, Soo Hyun;Kim, Min Ju;Ahn, Jeong-Hyun;Park, Hae-Jin;Lee, Woo Rak;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.33 no.6
    • /
    • pp.19-28
    • /
    • 2018
  • Objectives : The objective of this study was to investigate the protective effect of Flaxseed oil and Chrysanthemi Indici Flos 50% ethanol extract in an HCl/ethanol induced acute gastritis model. Methods : ICR mice were divided into 6 groups; normal mice (Nor), gastritic mice with distilled water (Veh), gastritic mice with 10 mg/kg sucralfate (SC), gastritic mice with 16 g/㎏ Flaxseed oil (FO), gastritic mice with FO + 50 mg/kg Chrysanthemi Indici Flos (FCL), and gastritic mice with FO + 100 mg/kg Chrysanthemi Indici Flos (FCH). Then, mice were orally administered with 150 mM HCl/60% ethanol and caused acute gastritis. After 1 hr, mice were sacrificed, and blood and stomach tissue were collected. Results : Administration of FCL and FCH to mice prior to the induction of gastritis was found to reduce gastric injury. reactive oxygen species (ROS) and peroxy nitrite ($ONOO^-$) levels of stomach tissues were significantly decreased in FO, FCL, and FCH compared to Veh group. As results of stomach protein analyses, FCL and FCH effectively reduce inflammatory-related factors such as inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and interleukin 1 beta ($IL-1{\beta}$) in gastric lesion mice. In addition, nuclear factor kappa B p65 ($NF-{\kappa}B$ p65) and phosphorylation inhibitor of nuclear factor kappa $B{\alpha}(p-I{\kappa}B{\alpha})$ were down-regulated in FCL and FCH administrated gastric lesion mice. Conclusions : These results suggest that FCL and FCH has an inhibitory effect against gastric injury. Therefore, FCL and FCH has the potential to be used as a natural therapeutic drug.

Maspin Expression and Its Clinical Significance in Non-Small Cell Lung Cancer (비소세포폐암에서 Maspin의 발현과 임상적 의의)

  • Yoon, Seong-Hoon;Kim, Won-Jin;Shin, Kyung-Hwa;Kim, Mi-Hyun;Cho, Woo-Hyun;Kim, Ki-Uk;Park, Hye-Kyung;Jeon, Doo-Soo;Kim, Yun-Seong;Lee, Chang-Hun;Lee, Min-Ki;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.2
    • /
    • pp.132-138
    • /
    • 2011
  • Background: Maspin (mammary serine protease inhibitor) is a member of the serpin superfamily. A few studies have examined the role of maspin in tumor suppression of non-small cell lung cancer (NSCLC); however, its role in the development and progression of NSCLC still remains controversial. We evaluated the immunohistochemical expression of maspin in order to elucidate its clinical significance in NSCLC. Methods: We analyzed 145 patients with pathologically confirmed NSCLC, including 66 cases of squamous cell carcinomas (SCCs) and 79 cases of adenocarcinomas (ADCs). We performed a immuno-histochemical stain with maspin and PCNA (proliferating cell nuclear antigen) using tissue microarray blocks. Results: There were 108 men and 37 women in the study population. The mean age of patients in the study was 63.7 years (range, 40.0~82.0; median, 65.0). The proportion of maspin expression was significantly higher in SCCs (52/66, 78.8%; p<0.01) than in ADCs (17/79, 21.5%; p<0.01). Maspin expression was not associated with PCNA (p=0.828), lymph node involvement (p=0.483), or tumor stage (p=0.216), but showed correlation with well-to-moderate tumor differentiation (p=0.012). There was no observed correlation between maspin expression and survival with NSCLC (p=0.218). Conclusion: The present study suggests that maspin expression was significantly higher in SCCs than in ADCs and was associated with low histological grade. However, maspin expression was not an independent factor to predict a prognosis in NSCLC.

Effect of Eupatorium japonicum Extract on the Metastasis, Invasion and Adhesion of MDA-MB-231 Human Breast Cancer Cells (등골나물 추출물이 인간의 유방암세포인 MDA-MB-231 세포의 이동, 침윤 및 부착에 미치는 영향)

  • Woo, Eun-Young;Park, So-Young;Kwon, Soo-Jin;Kwon, Gyoo-Taik;Kim, Jong-Dae;Lim, Soon-Sung;Yoon, Jung-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.213-219
    • /
    • 2011
  • The metastatic effect of Eupatorium japonicum extract (EJE) on MDA-MB-231 human breast cancer cells was investigated. MDA-MB-231 cells were treated with various concentrations of EJE (0, 5, 10 and $20{\mu}g/mL$). EJE inhibited cell migration, invasion and adhesion of MDA-MB-231 cells in dose-dependent manners. Gelatin zymography exhibited that EJE significantly down regulated secretion of matrix metalloproteinase (MMP)-9 and MMP-2. EJE decreased the protein levels of tissue inhibitor of metalloproteinase (TIMP)-1 but increased TIMP-2 levels. Additionally, EJE reduced the protein and mRNA levels of urokinase-type plasminogen activator (uPA), vascular endothelial growth factor (VEGF) and intercellular adhesion molecule (ICAM). In several solvent fractions of EJE, the hexane fraction markedly decreased MDAMB-231 cell migration. Thus, these finding suggest that EJE may be a potential antimetastatic agent, which can considerably inhibit the metastatic and invasive capacity of breast cancer cells.

Anti-wrinkle effect of berberine by inhibition of MMP-2 and MMP-9 activity in fibroblasts (섬유아세포에서의 MMP-2 및 MMP-9 활성 억제에 의한 베르베린의 항주름 효과)

  • Jang, Young-Ah;Lee, Jin-Tae
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • We analyzed the antioxidant and anti-wrinkle activities of berberine, isolated from dried rhizome of Coptis japonica Makino, to determine its cosmetic potential. We performed the 3-[4,5-dimethylthiazol]-2-yl]-2,5-diphenyl-tetrazoliumbromide (MTT) assay to evaluate the toxicity of the berberine. We also measured the ROS and hyaluronic acid production, and expression of MMP-2, MMP-9, TIMP-1, TIMP-2, and tumor necrosis factor-alpha ($TNF-{\alpha}$) to evaluate the antioxidant and anti-wrinkle activities of berberine, respectively. The cytotoxicity of ultraviolet light, in presence of berberine, was measured by the MTT assay using CCD-986sk fibroblasts, and no cytotoxicity was observed at concentrations less than $25{\mu}g/mL$. We also found that berberine decreased ROS production in a concentration-dependent manner and promoted the synthesis of hyaluronic acid. Further, berberine reduced the protein levels and mRNA expression of MMP-2 and MMP-9, which are associated with wrinkle formation, and increased the expression of TIMP-1 and TIMP-2. In addition, the inhibitory effect of berberine on $TNF-{\alpha}$, known as pro-inflammatory cytokine, was inhibited by $TNF-{\alpha}$ gene in a concentration-dependent manner. These results suggest that berberine holds cosmetic value owing to its antioxidant activity, by inhibiting ROS production and anti-wrinkle activity by reducing MMP-2 and MMP-9 and increasing TIMP-1 and TIMP-2 expression.

Effect of the Inhibition of PLA2 on Oxidative Lung Injury Induced by $Interleukin-1{\alpha}$

  • Lee, Young-Man;Cho, Hyun-Gug;Park, Yoon-Yub;Kim, Jong-Ki;Lee, Yoon-Jeong;Park, Won-Hark;Kim, Teo-An
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.5
    • /
    • pp.617-628
    • /
    • 1998
  • In order to understand the pathogenetic mechanism of adult respiratory distress syndrome (ARDS), the role of phospholipase A2 (PLA2) in association with oxidative stress was investigated in rats. $Interleukin-1{\alpha}\;(IL-1,\;50\;{\mu}g/rat)$ was used to induce acute lung injury by neutrophilic respiratory burst. Five hours after IL-1 insufflation into trachea, microvascular integrity was disrupted, and protein leakage into the alveolar lumen was followed. An infiltration of neutrophils was clearly observed after IL-1 treatment. It was the origin of the generation of oxygen radicals causing oxidative stress in the lung. IL-1 increased tumor necrosis factor (TNF) and cytokine-induced neutrophil chemoattractant (CINC) in the bronchoalveolar lavage fluid, but mepacrine, a PLA2 inhibitor, did not change the levels of these cytokines. Although IL-1 increased PLA2 activity time-dependently, mepacrine inhibited the activity almost completely. Activation of PLA2 elevated leukotriene C4 and B4 (LTC4 and LTB4), and 6-keto-prostaglandin $F2{\alpha}\;(6-keto-PGF2{\alpha})$ was consumed completely by respiratory burst induced by IL-1. Mepacrine did not alter these changes in the contents of lipid mediators. To estimate the functional changes of alveolar barrier during the oxidative stress, quantitative changes of pulmonary surfactant, activity of gamma glutamyltransferase (GGT), and ultrastructural changes were examined. IL-1 increased the level of phospholipid in the bronchoalveolar lavage (BAL) fluid, which seemed to be caused by abnormal, pathological release of lamellar bodies into the alveolar lumen. Mepacrine recovered the amount of surfactant up to control level. IL-1 decreased GGT activity, while mepacrine restored it. In ultrastructural study, when treated with IL-1, marked necroses of endothelial cells and type II pneumocytes were observed, while mepacrine inhibited these pathological changes. In histochemical electron microscopy, increased generation of oxidants was identified around neutrophils and in the cytoplasm of type II pneumocytes. Mepacrine reduced the generation of oxidants in the tissue produced by neutrophilic respiratory burst. In immunoelectron microscopic study, PLA2 was identified in the cytoplasm of the type II pneumocytes after IL-1 treatment, but mepacrine diminished PLA2 particles in the cytoplasm of the type II pneumocyte. Based on these experimental results, it is suggested that PLA2 plays a pivotal role in inducing acute lung injury mediated by IL-1 through the oxidative stress by neutrophils. By causing endothelial damage, functional changes of pulmonary surfactant and alveolar type I pneumocyte, oxidative stress disrupts microvascular integrity and alveolar barrier.

  • PDF

Endotoxin-induced Acute Lung Injury is Mediated by PAF Produced via Remodelling of Lyso PAF in the Lungs

  • Lee, Young-Man;Kim, Teo-An
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.219-226
    • /
    • 2000
  • In order to elucidate the role of platelet activating factor (PAF) in the acute lung injury induced by endotoxin (ETX), activities of phospholipase A2, lyso PAF acetyltransferase and oxidative stress by neutrophilic respiratory burst were probed in the present study. To induce acute lung injury, $100\;{\mu}g$ of E.coli ETX (type 0127; B8) was instilled directly into the tracheae of Sprague-Dawley rats. Five hours after the ETX instillation, induction of acute lung injury was confirmed by lung leak index and protein contents in the bronchoalveolar lavage (BAL) fluid. At the same time, lung phospholipase A2 (PLA2) activity and expression of group I and II secretory type PLA2 were examined. In these acutely injured rats, ketotifen fumarate, known as lyso PAF acetyltransferase inhibitor and mepacrine were administered to examine the role of PAF in the pathogenesis of the acute lung injury. To know the effect of the ETX in the synthesis of the PAF in the lungs, lyso PAF acetyltransferase activity and PAF content in the lungs were measured after treatments of ETX, ketotifen fumarate and mepacrine. In addition, the role of neutrophils causing the oxidative stress after ETX was examined by measuring lung myeloperoxidase (MPO) and enumerating neutrophils in the BAL fluid. To confirm the oxidative stress in the lungs, pulmonary contents of malondialdehyde (MDA) were measured. After instillation of the ETX in the lungs, lung leak index increased dramatically (p<0.001), whereas mepacrine and ketotifen decreased the lung leak index significantly (p<0.001). Lung PLA2 activity also increased (p<0.001) after ETX treatment compared with control, which was reversed by mepacrine and ketotifen (p<0.001). In the examination of expression of group I and II secretory PLA2, mRNA synthesis of the group II PLA2 was enhanced by ETX treatment, whereas ketotifen and WEB 2086, the PAF receptor antagonist, decreased the expression. The activity of the lysoPAF acetyltransferase increased (p<0.001) after treatment of ETX, which implies the increased synthesis of PAF by the remodelling of lysoPAF in the lungs. Consequently, the contents of the PAF in the lungs were increased by ETX compared with control (p<0.001), while mepacrine (p<0.001) and ketotifen (p<0.01) decreased the synthesis of the PAF in the lungs of ETX treated rats. The infiltration of the neutrophils was confirmed by measuring and enumerating lung MPO and the neutrophils in the BAL fluid respectively. Compared with control, ETX increased lung MPO and number of neutrophils in BAL significantly (p<0.001) whereas mepacrine and ketotifen decrerased number of neutrophils (p<0.001) and MPO (p<0.05, p<0.001, respectively). The lung MDA contents were also increased (p<0.001) by ETX treatment, but treatment with mepacrine (p<0.001) and ketotifen (p<0.01) decreased the lung MDA contents. Collectively, we conclude that ETX increases PLA2 activity, and that the subsequently increased production of PAF was ensued by the remodelling of the lyso PAF resulting in tissue injury by means of oxidative stress in the lungs.

  • PDF

Analysis of CEA Expression and EGFR Mutation Status in Non-small Cell Lung Cancers

  • Yang, Zhong-Ming;Ding, Xian-Ping;Pen, Lei;Mei, Lin;Liu, Ting
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3451-3455
    • /
    • 2014
  • Background: The serum carcinoembryonic antigen (CEA) level can reflect tumor growth, recurrence and metastasis. It has been reported that epidermal growth factor receptor (EGFR) mutations in exons 19 and 21may have an important relationship with tumor cell sensitivity to EGFR-TKI therapy. In this study, we investigated the clinical value of EGFR mutations and serum CEA in patients with non-small cell lung cancer (NSCLC). Materials and Methods: The presence of mutations in EGFR exons 19 and 21 in the tissue samples of 315 patients with NSCLC was detected with real-time fluorescent PCR technology, while the serum CEA level in cases who had not yet undergone surgery, radiotherapy, chemotherapy and targeted therapy were assessed by electrochemical luminescence. Results: The mutation rates in EGFR exons 19 and 21 were 23.2% and 14.9%, respectively, with the two combined in 3.81%. Measured prior to the start of surgery, radiotherapy, chemotherapy and targeted treatment, serum CEA levels were abnormally high in 54.3% of the patients. In those with a serum CEA level <5 ng/mL, the EGFR mutation rate was 18.8%, while with 5~19 ng/mL and ${\geq}20ng/mL$, the rates were 36.4% and 62.5%. In addition, in the cohort of patients with the CEA level being 20~49 ng/mL, the EGFR mutation rate was 85.7%, while in those with the CEA level ${\geq}50ng/mL$, the EGFR mutation rate was only 20.0%, approximately the same as in cases with the CEA level<5 ng/mL. Conclusions: There is a positive correlation between serum CEA expression level and EGFR mutation status in NSCLC patients, namely the EGFR mutation-positive rate increases as the serum CEA expression level rises within a certain range (${\geq}20ng/mL$, especially 20~49 ng/mL). If patient samples are not suitable for EGFR mutation testing, or cannot be obtained at all, testing serum CEA levels might be a simple and easy screening method. Hence, for the NSCLC patients with high serum CEA level (${\geq}20ng/mL$, especially 20~49 ng/mL), it is worthy of attempting EGFR-TKI treatment, which may achieve better clinical efficacy and quality of life.