• Title/Summary/Keyword: Tissue Regeneration

Search Result 1,325, Processing Time 0.027 seconds

Molecular Events of Insulin Action Occur at Lipid Raft/Caveolae in Adipocytes (지방세포의 Lipid Raft/Caveolae에서 인슐린의 분자적 작용기전)

  • Bae, Sun-Sik;Yun, Sung-Ji;Kim, Eun-Kyung;Kim, Chi-Dae;Choi, Jang-Hyun;Suh, Pann-Ghill
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.56-63
    • /
    • 2007
  • Insulin stimulates the fusion of intracellular vesicles containing glucose transporter 4 (GLUT4) with plasma membrane in adipocytes and muscle cells. Here we show that adipocyte differentiation results in enhanced insulin sensitivity of glucose uptake. On the other hand, glucose uptake in response to platelet-derived growth factor (PDGF) stimulation was markedly reduced by adipocyte differentiation. Expression level of insulin receptor and caveolin-1 was dramatically increased during adipocyte differentiation. Adipocyte differentiation caused :ilightly enhanced activation of acutely transforming retrovirus AKT8 in rodent T cell lymphoma (Akt) by insulin stimulation. However, activation of Akt by PDGF stimulation was largely reduced. Activation of ERK was not detected in both fibroblasts and adipocytes after stimulation with insulin. PDGF-dependent activation of ERK was reduced by adipocyte differentiation. Insulin-dependent glucose uptake was abrogated by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, in both fibroblasts and adipocytes. Also disassembly of caveolae structure by $methyl-\beta-cyclodextrin$ caused impairment of Akt activation and glucose uptake. Finally, insulin receptor, Akt, SH2-domain-containing inositol 5-phosphatase 2 (SHIP2), and regulatory subunit of PI3K are localized at lipid raft domain and the translocation was facilitated upon insulin stimulation. Given these results, we suggest that lipid raft provide proper site for insulin action for glucose uptake.

A Thermodynamic Study on Thermochromism of Blue Dye Systems (Blue 계열 염료의 열변색 현상에 관한 열역학적 연구)

  • Kim, Jae-Uk;Ji, Myoung-Jin;Cha, Byung-Kwan;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.500-505
    • /
    • 2010
  • Two different dyes containing the same molecular weight but different chemical structure have been utilized for the study of thermodynamic parameters. In this study, {3-(4-(diethylamino)phenyl)-3-(1-ethyl-2-methyl-1H-indol-3-yl)isobenzofuran-1(3H)-one} (Blue 502) and {3-(4-(diethylamino)-2-methylphenyl)-3-(1,2-dimethyl-1H-indol-3-yl)isobenzofuran-1(3H)-one} (Blue 402) were used. It has been performed by measuring UV spectra of the two dyes. In general, the blue shift has been observed from both dyes in higher carbon number alcohol solvents. Interestingly, Blue 502 showed higher stability than Blue 402 in the same conditions used in this study. And, the equilibrium constants (0.9~1.0) of the dyes depending upon temperature change were also calculated using UV absorbance. The standard enthalpy calculated from equilibrium constants and molar absorptivity($\varepsilon$) are 10.94 kJ/mol in Blue 402 and 9.010 kJ/mol in Blue 502, respectively.

THE EFFECT OF THE BIORESORBABLE COLLAGEN MEMBRANE ON THE REGENERATION OF BONE DEFECT BY USING THE MIXTURE OF AUTOGRAFT AND XENOGRAFT BONE

  • Lee Jung-Min;Kim Yung-Soo;Kim Chang-Whe;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.325-341
    • /
    • 2003
  • Statement of problem: In cases where bony defects were present, guided bone regenerations have been performed to aid the placement of implants. Nowadays, the accepted concept is to isolate bone from soft tissue by using barrier membranes to allow room for generation of new bone. Nonresorbable membranes have been used extensively since the 1980's. However, this material has exhibited major shortcomings. To overcome these faults, efforts were made to develop resorbable membranes. Guided bone regenerations utilizing resorbable membranes were tried by a number of clinicians. $Bio-Gide^{(R)}$ is such a bioresorbable collagen that is easy to use and has shown fine clinical results. Purpose: The aim of this study was to evaluate the histological results of guided bone regenerations performed using resorbable collagen membrane($Bio-Gide^{(R)}$) with autogenous bone, bovine drived xenograft and combination of the two. Surface morphology and chemical composition was analyzed to understand the physical and chemical characteristics of bioresorbable collagen membrane and their effects on guided bone regeneration. Material and methods: Bioresorbable collagen membrane ($Bio-Gide^{(R)}$), Xenograft Bone(Bio-Oss), Two healthy, adult mongrel dogs were used. Results : 1. Bioresorbable collagen membrane is pure collagen containing large amounts of Glysine, Alanine, Proline and Hydroxyproline. 2. Bioresorbable collagen membrane is a membrane with collagen fibers arranged more loosely and porously compared to the inner surface of canine mucosa: This allows for easier attachment by bone-forming cells. Blood can seep into these spaces between fibers and form clots that help stabilize the membrane. The result is improved healing. 3. Bioresorbable collagen membrane has a bilayered structure: The side to come in contact with soft tissue is smooth and compact. This prevents soft tissue penetration into bony defects. As the side in contact with bone is rough and porous, it serves as a stabilizing structure for bone regeneration by allowing attachment of bone-forming cells. 4. Regardless of whether a membrane had been used or not, the group with autogenous bone and $Bio-Oss^{(R)}$ filling showed the greatest amount of bone fill inside a hole, followed by the group with autogenous bone filling, the group with blood and the group with $Bio-Oss^{(R)}$ Filling in order. 5. When a membrane was inserted, regardless of the type of bone substitute used, a lesser amount of resorption occurred compared to when a membrane was not inserted. 6. The border between bone substitute and surrounding bone was the most indistinct with the group with autogenous bone filling, followed by the group with autogenous bone and $Bio-Oss^{(R)}$ filling, the group with blood, and the group with $Bio-Oss^{(R)}$ filling. 7. Three months after surgery, $Bio-Gide^{(R)}$ and $Bio-Oss^{(R)}$ were distinguishable. Conclusion: The best results were obtained with the group with autogenous bone and $Bio-Oss^{(R)}$ filling used in conjunction with a membrane.

Fisetin Protects C2C12 Mouse Myoblasts from Oxidative Stress-Induced Cytotoxicity through Regulation of the Nrf2/HO-1 Signaling

  • Cheol Park;Hee-Jae Cha;Da Hye Kim;Chan-Young Kwon;Shin-Hyung Park;Su Hyun Hong;EunJin Bang;Jaehun Cheong;Gi-Young Kim;Yung Hyun Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.591-599
    • /
    • 2023
  • Fisetin is a bioactive flavonol molecule and has been shown to have antioxidant potential, but its efficacy has not been fully validated. The aim of the present study was to investigate the protective efficacy of fisetin on C2C12 murine myoblastjdusts under hydrogen peroxide (H2O2)-induced oxidative damage. The results revealed that fisetin significantly weakened H2O2-induced cell viability inhibition and DNA damage while blocking reactive oxygen species (ROS) generation. Fisetin also significantly alleviated cell cycle arrest by H2O2 treatment through by reversing the upregulation of p21WAF1/CIP1 expression and the downregulation of cyclin A and B levels. In addition, fisetin significantly blocked apoptosis induced by H2O2 through increasing the Bcl-2/Bax ratio and attenuating mitochondrial damage, which was accompanied by inactivation of caspase-3 and suppression of poly(ADP-ribose) polymerase cleavage. Furthermore, fisetin-induced nuclear translocation and phosphorylation of Nrf2 were related to the increased expression and activation of heme oxygenase-1 (HO-1) in H2O2-stimulated C2C12 myoblasts. However, the protective efficacy of fisetin on H2O2-mediated cytotoxicity, including cell cycle arrest, apoptosis and mitochondrial dysfunction, were greatly offset when HO-1 activity was artificially inhibited. Therefore, our results indicate that fisetin as an Nrf2 activator effectively abrogated oxidative stress-mediated damage in C2C12 myoblasts.

The effects of hard and soft tissue grafting and individualization of healing abutments at immediate implants: an experimental study in dogs

  • Thoma, Daniel S.;Jung, Ui-Won;Gil, Alfonso;Kim, Myong Ji;Paeng, Kyeong-Won;Jung, Ronald E.;Fickl, Stefan
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.3
    • /
    • pp.171-184
    • /
    • 2019
  • Purpose: To evaluate the effects of intra-alveolar socket grafting, subepithelial connective tissue grafts, and individualized abutments on peri-implant hard and soft tissue outcomes following immediate implant placement. Methods: This randomized experimental study employed 5 mongrel dogs, with 4 sites per dog (total of 20 sites). The mesial roots of P3 and P4 were extracted in each hemimandible and immediate dental implants were placed. Each site was randomly assigned to 1 of 4 different treatment groups: standardized healing abutment (control group), alloplastic bone substitute material (BSS) + standardized healing abutment (SA group), BSS + individualized healing abutment (IA group), and BSS + individualized healing abutment + a subepithelial connective tissue graft (IAG group). Clinical, histological, and profilometric analyses were performed. The intergroup differences were calculated using the Bonferroni test, setting statistical significance at P<0.05. Results: Clinically, the control and SA groups demonstrated a coronal shift in the buccal height of the mucosa ($0.88{\pm}0.48mm$ and $0.37{\pm}1.1mm$, respectively). The IA and IAG groups exhibited an apical shift of the mucosa ($-0.7{\pm}1.15mm$ and $-1.1{\pm}0.96mm$, respectively). Histologically, the SA and control groups demonstrated marginal mucosa heights of $4.1{\pm}0.28mm$ and $4.0{\pm}0.53mm$ relative to the implant shoulder, respectively. The IA and IAG groups, in contrast, only showed a height of 2.6mm. In addition, the height of the mucosa in relation to the most coronal buccal bone crest or bone substitute particles was not significantly different among the groups. Volumetrically, the IA group ($-0.73{\pm}0.46mm$) lost less volume on the buccal side than the control ($-0.93{\pm}0.44mm$), SA ($-0.97{\pm}0.73mm$), and IAG ($-0.88{\pm}0.45mm$) groups. Conclusions: The control group demonstrated the most favorable change of height of the margo mucosae and the largest dimensions of the peri-implant soft tissues. However, the addition of a bone substitute material and an individualized healing abutment resulted in slightly better preservation of the peri-implant soft tissue contour.

Regeneration of total tissue using alveolar ridge augmentation with soft tissue substitute on periodontally compromised extraction sites: case report (치주질환 원인의 심한 골소실을 동반한 발치와에 대한 치조제 증강술과 연조직 대체제를 이용한 조직 재생 효과: 증례보고)

  • Yerim Oh;Jae-Kwan Lee;Heung-Sik Um;Beom-Seok Chang;Jong-bin Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.276-284
    • /
    • 2023
  • After tooth extraction, alveolar bone is resorbed over time. Loss of alveolar bone and reduction of upper soft tissue poses difficulties in future implant placement and long-term survival of the implant. This case report focuses on increasing the soft and hard tissues at the implant placement site by using alveolar ridge augmentation and a xenogeneic collagen matrix as a soft tissue substitute in an extraction socket affected by periodontal disease. In each case, the width of the alveolar bone increased to 6 mm, 8 mm, and 4 mm, and regeneration of the interdental papilla around the implant was shown, as well as buccal keratinized gingiva of 4 mm, 6 mm, and 4 mm, respectively. Enlarged alveolar bone facilitates implant surgery, and interdental papillae and keratinized gingiva enable aesthetic prosthesis. This study performed alveolar ridge augmentation on patients with extraction sockets affected by periodontal disease and additionally used soft tissue substitutes to provide a better environment for implant placement and have positive effects for aesthetic and predictive implant surgery.

BONE REGENERATION WITH INJECTABLE MPEG-PCL DIBLOCK COPOLYMER AND BONE MARROW MESENCHYMAL STEM CELL (골수 줄기세포와 주사형 MPEG-PCL diblock copolymer를 이용한 조직공학적 골재생)

  • Jeong, You-Min;Lee, Tai-Hyung;Park, Jeong-Kyun;Kim, Won-Suk;Shin, Joo-Hee;Lee, Eui-Seok;Rim, Jae-Suk;Jang, Hyon-Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • Aim of the study: As an injectable scaffold, MPEG-PCL diblock copolymer was applied in bone tissue engineering. In vivo bone formation was evaluated by soft X-ray, histology based on the rat calvarial critical size defect model. Materials and Methods: New bone formation was evaluated with MPEG-PCL diblock copolymer in rat calvarial critical size bone defect. No graft was served as control. 4, 8 weeks after implantation, gross evidence of bone regeneration was evaluated by histology and soft X-ray analysis. Results: The improved and effective bone regeneration was achieved with the BMP-2 and osteoblasts loaded MPEG-PCL diblock copolymer. Conclusion: It was confirmed that MPEG-PCL temperature sensitive hydrogels was useful as an injectable scaffold in bone regeneration.

Rat Peripheral Nerve Regeneration Using Nerve Guidance Channel by Porcine Small Intestinal Submucosa

  • Yi, Jin-Seok;Lee, Hyung-Jin;Lee, Hong-Jae;Lee, Il-Woo;Yang, Ji-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.2
    • /
    • pp.65-71
    • /
    • 2013
  • Objective : In order to develop a novel nerve guidance channel using porcine small intestinal submucosa (SIS) for nerve regeneration, we investigated the possibility of SIS, a tissue consisting of acellular collagen material without cellular immunogenicity, and containing many kinds of growth factors, as a natural material with a new bioactive functionality. Methods : Left sciatic nerves were cut 5 mm in length, in 14 Sprague-Dawley rats. Grafts between the cut nerve ends were performed with a silicone tube (Silicon group, n=7) and rolled porcine SIS (SIS group, n=7). All rats underwent a motor function test and an electromyography (EMG) study on 4 and 10 weeks after grafting. After last EMG studies, the grafts, including proximal and distal nerve segments, were retrieved for histological analysis. Results : Foot ulcers, due to hypesthesia, were fewer in SIS group than in Silicon group. The run time tests for motor function study were 2.67 seconds in Silicon group and 5.92 seconds in SIS group. Rats in SIS group showed a better EMG response for distal motor latency and amplitude than in Silicon group. Histologically, all grafts contained some axons and myelination. However, the number of axons and the degree of myelination were significantly higher in SIS group than Silicon group. Conclusion : These results show that the porcine SIS was an excellent option as a natural biomaterial for peripheral nerve regeneration since this material contains many kinds of nerve growth factors. Furthermore, it could be used as a biocompatible barrier covering neural tissue.

Biological Effects Of Flurbiprofen Loaded Chitosan To Gingival Fibroblast (Flurbiprofen 함유 키토산 제제가 치은 섬유아세포에 미치는 영향)

  • Chung, Chong-Pyoung;Park, Yoon-Jeong;Lee, Seung-Jin;Rhyu, In-Cheol;Choi, Sang-Mook
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.317-333
    • /
    • 1996
  • The main goal of periodontal regeneration is to be achieved by epithelial exclusion, periodontal ligament cell activation or alveolar bone regeneration. The purpose of this study was to investigate on the physico- chemical and biological characteristics of biodegradable chitosan beads. Chitosan beads were fabricated by ionic gelation with sodium tripolyphosphate and they had the size in 300um diameter. As therapeutic agent, flurbiprofen was incorporated into the beads by 10, 20% loading contents. The release of drugs from the chitosan beads was measured in vitro. Also, biological activity tests of flurbiprofen loaded chitosan beads including cytotoxicity test, ihhibition of $IL-1{\beta}$ production, suppression to $PGE_2$ production, collagenase inhibition test, the ability of total protein synthesis, and tissue response were evaluated. The amount of flurbiprofen released from chitosan was 33-50% during 7 days. Minimal cytotoxicity was observed in chitosan beads. Flurbiprofen released from chitosan beads significantly suppressed the $IL-1{\beta}$ production of monocyte, $PGE_2$ production and markedly inhibited collagenase activity. Meanwhile, flurbiprofen released from this system showed increased ability for protein synthesis. Throughout 4 -week implantation period, no significant inflammatory cell infiltrated around chitosan bead and also fibroblast like cell types at the beads - tissue interface were revealed with gradual degradation of implanted chitosan beads. From these results, it was suggested that flurbiprofen loaded chitosan beads can be effectively useful for biocompatible local delivery system in periodontal regeneration.

  • PDF

HISTOLOGICAL COMPARATIVE STUDY OF GUIDED BONE REGENERATION WITH GORE-TEX-TXMEMBRANE AND COLLACOTE® (Gore-TexTMmembrane과 COLLACOTE®를 이용한 골유도 재생술의 조직학적 비교 연구)

  • Kim, Tae-Kyu;Jang, Chang-Dug;Kim, Cheol-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.19 no.1
    • /
    • pp.15-24
    • /
    • 1997
  • The principle of guided tissue regeneration (GTR), as applied to bone healing, is based on the prevention of connective tissue from entering the bony defect during the healing phase. This allows the slower bone producing cells to migrate into and reproduce bone within the defect. GTR has demonstrated a level of success in regenerating bone defect. Several types of membrane barrier have been utilized to apply this principle in bone regeneration. The purpose of this study was to evaluate whether improved bone regeneration can be achieved with different membrane barriers ($Gore-Tex^{TM}$membrane, $COLLACOTE^{(R)}$). In the 10 NewZealand white rabbits, full-thickness bone defects on three sites of each rabbit calvaria were made. Experimental group 1 was covered with $COLLACOTE^{(R)}$, and group 2 was covered with $Gore-Tex^{TM}$membrane. Macroscopic, microscopic examinations were made serially on 1, 2, 3, 6, 12 weeks after operation. The results were as follows : 1. Macroscopically, both of experimental group 1, 2 were filled with bone-like mass but the defects of experimental group 1 disclosed markedly thinner than the original bone. 2. Microscopically, the defect of experimental group 1, 2 was filled with bony trabeculae without infection and adverse reaction. But multinucleated giant cell infiltration around $COLLACOTE^{(R)}$ was seen till 6th week. 3. Resorption of $COLLACOTE^{(R)}$ started from 3rd week and it was completely resorped on the 12th week.

  • PDF