• Title/Summary/Keyword: Tire-Tube

Search Result 22, Processing Time 0.02 seconds

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.

Analytical post-heating behavior of concrete-filled steel tubular columns containing tire rubber

  • Karimi, Amirhossein;Nematzadeh, Mahdi;Mohammad-Ebrahimzadeh-Sepasgozar, Saleh
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.467-482
    • /
    • 2020
  • This research focused on analyzing the post-fire behavior of high-performance concrete-filled steel tube (CFST) columns, with the concrete containing tire rubber and steel fibers, under axial compressive loading. The finite element (FE) modeling of such heated columns containing recycled aggregate is a branch of this field which has not received the proper attention of researchers. Better understanding the post-fire behavior of these columns by measuring their residual strength and deformation is critical for achieving the minimum repair level required for structures damaged in the fire. Therefore, to develop this model, 19 groups of confined and unconfined specimens with the variables including the volume ratio of steel fibers, tire rubber content, diameter-to-thickness (D/t) ratio of the steel tube, and exposure temperature were considered. The ABAQUS software was employed to model the tested specimens so that the accurate behavior of the FE-modeled specimens could be examined under test conditions. To achieve desirable results for the modeling of the specimens, in addition to the novel procedure described in this research, the modified versions of models presented by previous researchers were also utilized. After the completion of modeling, the load-axial strain and load-lateral strain relationships, ultimate strength, and failure mode of the modeled CFST specimens were evaluated against the test data, through which the satisfactory accuracy of this modeling procedure was established. Afterward, using a parametric study, the effect of factors such as the concrete core strength at different temperatures and the D/t ratio on the behavior of the CFST columns was explored. Finally, the compressive strength values obtained from the FE model were compared with the corresponding values predicted by various codes, the results of which indicated that most codes were conservative in terms of these predictions.

Studies on the Quality Reinforcement for Pneumatic Tire and Tube. Part 2. Physical Properties of NR-Syn. R blends. (Tire 및 Tube의 품질(品質) 보강(補强)에 관(關)한 연구(硏究)(제2보(第2報)) 천연(天然) 및 합성(合成)고무의 변량혼합(變量混合)에 따른 이화학적(理化學的) 성능(性能))

  • Kim, Joon-Soo;Lee, Myung-Whan;Yum, Hong-Chan;Lee, Chin-Bum;Park, Chang-Ho;Hong, Chong-Myung;Im, Dong-Ho;Lee, Chong-Koun
    • Elastomers and Composites
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 1968
  • The physical properties of NR-SBR and NR-BR blends were studied. 1. In blending, tensile strength decreased with increase in synthetic rubber contents. It was most effective when the ratio of NR/Syn. R is 75/25. 2. Tensile strength decreased with order of NR, SBR and BR and modulus after aging is proportional of synthetic rubber contents. 3. Elongation is less influenced by synthetic rubber ratio that on the other hand, the decrease of elongation is proportional to synthetic rubber contents after aging. 4. Hardness decreased with increase in the synthetic rubber contents and on the other hand, the hardness increased after aging.

  • PDF

Study on Heat Transfer Characteristics of Discrete Fin-and-tube Heat Exchangers (독립 핀-튜브 열교환기의 열전달 성능특성에 관한 연구)

  • Lee, Ho-Seong;Kim, Yong-Han;Choi, Jong-Min;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.274-280
    • /
    • 2005
  • The objective of this study Is to investigate the heat transfer performance of plate discrete fin-and-tube heat exchangers with large fin pitch. In this study, twenty-two heat exchangers were tested with a variation of fin pitch, number of tube row, longitudinal tube pitch and fin alignment. Discrete fin type exchangers improved heat transfer performance more than 10% compared to tile continuous fin type heat exchangers. The air-side heat transfer coefficient decreased with a reduction of the fin pitch and an increase of the number of tube row, The staggered fin alignment improved heat transfer performance more than 6% compared to the inline fin alignment. The effect of longitudinal tube pitch was insignificant on the j-factor and experiments found opposite effects on the j-factor with respect to fin alignment. Heat transfer correlations were developed from the measured data for flat plate discrete fin-and-tube heat exchangers with large fin pitch. The correlations yielded good predictions of the measured data with mean deviations of 1,4% and 0.3% for tire inline and staggered tube alignment, respectively.

  • PDF

Waste Tire Pyrolysis Commercialization Plant for 120t/d Treatment (120톤/일 처리 폐타이어 열분해 상업화 설비 개발)

  • Kim, Seong-Yeon;Kim, Ki-Kyeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.138-141
    • /
    • 2008
  • The 120t/d pyrolysis commercial plant for waste tire recycling have been constructed in Malaysia and is going to be operated. The plant have the tube reactor with chain conveyer attached disk developed in demonstration research stage. The reactor temperature for commercial plant is about 500deg.C and reactor inside pressure is -100$\sim$-120mmHg. Non-condensable gas is used as fuel for pyrolysis heat source, and the exhausted heat is recovered for cogeneration to produce steam and electric power of 600kw.

  • PDF

Study on Operation Characteristics of Waste Tire Pyrolysis Demonstration Plant with Moving Disk Tube Reactor System (디스크 이동식 폐타이어 열분해 실증 설비의 운전 특성 고찰)

  • Ha, Hyun-Jung;Kim, Seong-Yeon;Kim, Ki-Kyeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.157-160
    • /
    • 2008
  • 본 연구에서는 디스크 이동식 폐타이어 열분해 실증 설비(10톤/일)를 설계, 제작 그리고 시운전을 통하여 열분해 설비의 안정적인 연속 운전이 가능함을 확인하였다. 시운전 결과 반응기 내부 온도는 $500{\sim}600^{\circ}C$, 내부 압력은 $-80{\sim}-100mmHg$, 체류시간은 $60{\sim}90min$ 범위에서 안정적인 열분해가 일어났다. 또한 이번 과제 수행을 통해NC 가스의 연소기를 개발 적용하여 NC 가스의 열분해 열원으로 사용 가능성을 확인하였으며, NC 가스 연소 시 대기 측정을 통하여 규제치도 만족함을 확인할 수 있었다. 지금까지 나온 결과는 장기 연속 운전과 scale-up을 위한 기초 자료가 될 것이다.

  • PDF

An Experimental Study on the Absorption Performance of Steel-Wire Sound Absorbing Materials (금속와이어 흡음재의 흡음성능에 관한 실험적 연구)

  • 서성원;용호택;이동훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.413-421
    • /
    • 2003
  • The acoustic performances of steel-wire sound absorbing materials with different thicknesses and bulk densities were investigated experimentally. The well-known two-cavity method was used to measure the characteristic impedance, propagation constant and absorption coefficient. The normal absorption coefficients measured by two-cavity method agreed well with those by the two-microphone impedance tube method. The experimental results showed that the magnitude of the absorption coefficient and the frequency range of the maximum absorption coefficient were controllable by changing the thickness and bulk density of the steel-wire. Therefore, the steel-wires obtained from the crushed tire chips could be used as a good absorbing material.

Gasification Process Characteristics of Scrap Tire in an Internally Circulating Fluidized Bed with a Draft Tube (드래프트 관을 갖는 내부순환유동층 반응기에서의 폐타이어 가스화 공정의 특성 연구)

  • 이승엽;김용전;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.71-74
    • /
    • 1999
  • 최근 들어 자동차 보유대 수의 급격한 증가와 함께 폐타이어의 발생량도 급격히 증가하였다. 폐타이어의 발생량이 적었을 때는 매립이나 소각 등의 방법으로 폐타이어를 처리해도 별 문제가 발생하지 않았다. 그러나, 폐타이어 발생량이 급격히 증가한 요즈음은 발생된 폐타이어가 합법적으로 처리되어지지 못하고 야적, 방치, 불법 매립 및 소각 등의 방법으로 처리됨으로써 환경적인 오염뿐만 아니라 시각적 공해, 대기 오염 등의 문제를 심각하게 야기 시키고 있다.(중략)

  • PDF

Modeling of Waste Tire Gasification in an Internally Circulating Fluidized Bed (내부순환유동층 반응기에서의 폐타이어 가스화 모델링)

  • 이승엽;김용전;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.75-79
    • /
    • 1999
  • 순환유동층은 주탑에서 비말 동반된 입자를 cyclone과 같은 입자 포집장치에서 회수하여 다시 주탑으로 재 주입함으로써 입자의 순환이 일어나는 외부 순환계와 종래의 유동층내에 원형관(Draft tube)이나 평판을 설치하여 두개의 층으로 분리한 후 가스 분산판 위의 간격을 통해 입자들을 두 구역 사이로 강제 순환시키는 내부순환계로 분류할 수 있다. 드래프트 관을 갖는 내부순환유동층 반응기는 기체와 고체의 적절한 접촉을 통해 반응이 이루어지는 반응기 형태이다.(중략)

  • PDF

A Study on the Selection of Forward Flow Forming Conditions with Inconel718 Tube for Mortar Barrel Manufacturing (박격포 포신 제작을 위한 Inconel718 소재의 전진 유동성형 조건 선정에 관한 연구)

  • Ko, Se-Kwon;Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.51-59
    • /
    • 2019
  • Flow forming is an eco-friendly and high-efficiency plastic deformation process with fewer chips during a process which is specifically used to manufacture seamless tubular products like tire wheels, rocket motor cases etc. On the development of mortar barrel using Inconel718 tube, some flow formed products had dimensional errors on their thickness. In this study, our purpose is to optimize the process conditions with the smallest dimensional error. In order to find an optimum process condition, 2D axisymmetric FEM simulation analyses with Taguchi method were conducted. Geometric variables (attack angle, flatting angle, roller nose radius) and operating parameters (depth of forming, feed rate) are considered as control factors. Forward flow forming with single roller was first analyzed to determine the effective factors using AFDEX software and attack angle of the roller was identified as the most influential factor. Also, the nose radius of the rollers was confirmed as a significant factor in multi-rollers flow forming system. The effect of rollers offset values are also studied and finally, we proposed optimal conditions to improve the accuracy of flow forming process with Inconel718 tube for mortar barrel manufacturing.