• 제목/요약/키워드: Tire mixing process

검색결과 5건 처리시간 0.02초

타이어 정련 공정 스케줄링을 위한 유전자 알고리즘 (Genetic Algorithms for Tire Mixing Process Scheduling)

  • 안의국;박상철
    • 한국CDE학회논문집
    • /
    • 제18권2호
    • /
    • pp.129-137
    • /
    • 2013
  • This paper proposed the scheduling method for tire mixing processes using the genetic algorithm. The characteristics of tire mixing process have the manufacturing routing, operation machine and operation time by compound types. Therefore, the production scheduling has to consider characteristics of the tire mixing process. For the reflection of the characteristics, we reviewed tire mixing processes. Also, this paper introduces the genetic algorithm using the crossover and elitist preserving selection strategy. Fitness is measured by the makespan. The proposed genetic algorithm has been implemented and tested with two examples. Experimental results showed that the proposed algorithm is superior to conventional heuristic algorithm.

Influence of Loading Procedure of Liquid Butadiene Rubber on Properties of Silica-filled Tire Tread Compounds

  • Jinwoo Seo;Woong Kim;Seongguk Bae;Jungsoo Kim
    • Elastomers and Composites
    • /
    • 제57권4호
    • /
    • pp.129-137
    • /
    • 2022
  • Low molecular weight liquid butadiene rubber (LqBR) is a processing aid that can resolve the migration problem of tire tread compounds. Various studies are being conducted to replace the petroleum-based processing oil with LqBR. However, the effect of the loading time of LqBR in the compounding process on silica dispersion and vulcanizate properties is not well known. In this study, we analyzed silica dispersion, vulcanizate properties, and viscoelastic properties of silica-filled tire tread compound according to the processing aid type (TDAE oil, non-functional LqBR) and, silane terminated LqBR) and input timing. In the non-functional LqBR compounds, the 'with TESPT' mixing procedure showed excellent dynamic viscoelastic properties while silane-terminated LqBR compounds showed that the 'after TESPT' mixing procedure was good for 300% modulus and abrasion resistance.

솔리드 타이어 제조를 위한 스프링 벤트 시스템의 적용 (Application of Spring Vent System for the Manufacturing of Solid Tire)

  • 손종남;정영철;조영태;정윤교
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.659-663
    • /
    • 2014
  • Manufacturing processes of industrial tire are composed of mixing, extrusion, curing, trimming and inspecting. Among them curing is the most important process in the production of industrial tire. In this study the newly developed spring vent system was designed in order to solve rubber intrusion problem inside spring vent system in the curing process. After the experiment it is concluded that rubber intrusion was caused by angled stem head part. New spring vent system was manufactured and new design of spring vent system is proper to use for industrial tire curing process.

Properties of Silica-SBR Compounds Using Cellulose Dispersant Applicable to Tire Tread Rubber

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • 제55권3호
    • /
    • pp.176-183
    • /
    • 2020
  • Silica-styrene butadiene rubber (Silica-SBR) compounds have been used in the preparation of tire treads. The silica dispersibility of silica-SBR compounds is related to the processability, mechanical properties, and wear resistance of tires. Recently, in order to improve the silica dispersibility of the silica-SBR compounds, the wet masterbatch (WMB) process was introduced, which is a method of mixing rubber in the water phase. We aimed to improve the silica dispersibility of the silica-SBR compounds by preparing a silica dispersant applicable to the WMB process. For this purpose, cellulose, 2-hydroxyethyl cellulose, and cellulose acetate were employed as a silica dispersant. The silica dispersibility of the compounds was measured by a moving die rheometer. Improvement in the processability of silica-SBR compounds was evaluated by the Mooney viscometer. The wear resistance of silica-SBR compounds using a cellulose dispersant was improved by up to 29%.

타이어 고무 애쉬 치환에 따른 플라이애쉬 혼입 콘크리트의 내구성능 성능 평가 (Evaluation of Durability Performance of Fly Ash Blended Concrete due to Fly Ash Replacement with Tire Derived Fuel Ash)

  • 권성준;윤용식;박상민;김혁중
    • 콘크리트학회논문집
    • /
    • 제28권6호
    • /
    • pp.647-653
    • /
    • 2016
  • 본 연구에서는 FA (Fly Ash)를 20%치환한 배합에 대하여 TDFA (Tire Derived Fuel Ash)를 3.0~12.0%까지 중량 치환하면서 내구성 평가를 수행하였다. TDFA는 열병합발전소에서 열효율을 높이기 위해 폐타이어를 혼소시킨 뒤 발생한 산업부산물로서 국내에서 콘크리트에 적용한 연구는 없는 상태이다. 이를 위해 물-결합재를 50%, FA를 20% 치환한 Control 콘크리트를 제조하였으며, TDFA를 치환하면서 압축강도, 촉진 탄산화 시험, 촉진염해 시험, 공극구조평가를 수행하였다. 압축강도, 탄산화, 공극구조에서는 12%까지 TDFA를 FA와 치환해도 동등이상의 성능을 확보하였다. 특히 염해에 대해서는 TDFA의 치환률의 증가에 따라 뚜렷한 염화물 확산계수의 감소를 나타내어 최종적으로 75.3~70.9%까지 염화물 확산계수가 감소하였다. TDFA를 혼입한 콘크리트 배합시, 워커빌리티의 확보가 가능하다면 TDFA를 혼입한 콘크리트는 내구성 개선에 효과적일 것으로 판단된다.