• Title/Summary/Keyword: Tire mark

Search Result 13, Processing Time 0.018 seconds

Accident reconstruction using yaw mark analysis (요마크 분석을 통한 사고 재구성)

  • 하정섭;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.443-446
    • /
    • 2002
  • A vehicle oversteered or cornering at excessive speed leaves tire yaw mark on the road surface. A yaw mark is a sign that the tire was sideslipping and exceeded its frictional limit because of centrifugal force. Problems exist with the traditional equation, “critical speed formula (CSF)”, that limits its practical use in traffic accident reconstruction. A major problem is that the equation dose not account for vehicle dynamics and interface between tire and road. The literature refers to that the accuracy of the critical speed formula varies with several factors. New equations that account for vehicle dynamics are introduced in this paper. A comparison of the accuracy of the new method and the traditional method in the calculation of speed is conducted.

  • PDF

Implementation of Smart Traffic Safety Systems using Fuzzy Theory

  • Han, Chang Pyoung;Hong, You Sik
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.71-82
    • /
    • 2020
  • Traffic accidents due to excessive speed frequently occur in places where traffic signal controllers are installed, places where sharp curves exist, or places where the traffic signal cycle does not match the current time. These traffic accidents cause economic loss due to the destruction of road facilities and structures, and cause a big problem of increasing the number of traffic accident deaths. When a traffic accident occurs, leaving a tire mark before or after a car crash, pre-collision speed of the car is calculated using the law of conservation of momentum or the skid mark formula. In the skip skid mark generated in ABS brake vehicles and the combshaped yaw mark generated by tire trace caused by lateral sliding, there is a difference of 30-40% in the reliability of the vehicle speed calculated by the smite mark. In this paper, we propose an algorithm that can improve the calculation reliability in vehicle speed by using skid marks in order to compensate for this problem. In addition, we present an intelligent speed calculation algorithm for traffic safety and a computer simulation in order to prevent traffic accidents by estimating the speed of a vehicle, using Skid marks, Yaw marks, and ABS brake characteristics and fuzzy rules.

Analysis of Uncertainties in Estimation of Critical Speeds from Tire Yaw Marks (타이어 요마크로부터 임계속도 추정의 불확실성 해석)

  • Han, Inhwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.361-370
    • /
    • 2015
  • There will inevitably be errors and uncertainties in tire yaw mark related critical speed formula, which is derived merely from the relationship between the centrifugal force and the friction force acting on the point-mass vehicle. Constructing and measuring yaw marks through appropriate simulation works have made it possible to perform uncertainty analysis in calculation of critical speeds under variation of variety of conditions and parameters while existing yaw mark experimental tests have not performed properly. This paper does not present only the critical speed analysis results for parametric sensitivity and uncertainty of chord and middle ordinate, coefficient of friction and road grade, but also modeling uncertainty such as variation of braking level during turning and vehicle size. The yaw mark analysis methods and results may be now applied in practice of traffic accident investigation.

An Estimate of Vehicle Velocity of Braking Starting Point (제동 직전 자동차 주행 속도 추정에 관한 연구)

  • Han, Chang-Pyoung;Park, Kyoung-Suk;Choi, Myung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.174-179
    • /
    • 2007
  • The transient brake time or distance is one of very important factors to guess the vehicle speed to inspect an automobile accident. But, it is usual that the vehicle speed is estimated by using only skid mark without considering the transient brake distance. Deceleration and the friction coefficients of tire and road surface play an important role in calculating the brake distance. In this paper, a scheme is presented to estimate more accurate automobile speed. The scheme contains the effect of the transient brake distance on the speed. Experiment was carried out on the asphalt, unpacked road to get relationships between the speeds and the skid mark distances, and to get the transient brake time. The experimental results were utilized to construct the equation to approximate more realistic vehicle speeds.

Speed Estimation from Tire Marks for Vehicle Accident Reconstruction (곡선 형태의 타이어 자국으로부터 차량사고시 속도추정)

  • Kim, Min-Seok;Lee, Ji-Hoon;Yoo, Wan-Suk;Kim, Kee-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.128-133
    • /
    • 2008
  • In this paper, a new technique was suggested to estimate vehicle speed for the traffic accident reconstruction, and accident investigators can estimate initial vehicle speed based on this suggested technique. Turning tests with several vehicle speeds were executed and compared with the motion of the vehicle and the shape of the tire marks. A new method for estimating the coefficient of friction is suggested by using the longitudinal and lateral components of tire marks. And also, a speed calculation graph is suggested to estimate vehicle speed for traffic accident reconstruction.

Comparison of Rapid Braking Characteristics between an Expert Driver and a General Person (전문가와 일반인의 급제동 특성 및 바퀴 잠김 속도 비교)

  • Kim, Kee-Nam;Lee, Ji-Hoon;Kim, Min-Seok;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.12-18
    • /
    • 2009
  • Skid mark and coefficient of friction are usually utilized to calculate the velocity and behavior of vehicles. For a critical case such as traffic accident reconstruction, however, the initial velocity of the car should be calculated precisely. In this study, in order to estimate the speed at the brake onset, rapid braking tests were executed on the proving ground. We compared with a skid length and wheel locking time of an expert driver and a general person. We verified that the skid mark of expert driver occurs longer than general person's. A new method is proposed to determine the speed of a vehicle at the brake onset of maximum braking, which could be applied to a reconstruction of vehicle with Non-ABS.

Relationships Between Pre-Skidding and Pre-Braking Speed (활주 직전과 제동 직전 속도의 상관관계 규명에 관한 연구)

  • Ryu, Tae-Seon;Jeon, Jin-U;Park, Hong-Han;Lee, Su-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.43-51
    • /
    • 2009
  • This paper investigates the accuracy of vehicle pre-braking speed estimates based upon tire/roadway coefficient of friction (drag factor) measurements and skid mark measurements Data for pre-braking and pre-skidding speeds were collected to determine if there were any correlations between pre-braking speeds and pre-skidding speeds. Braking tests were performed on two vehicles using various measurement devices including a fifth wheel, a speed gun, and a vericom 2000. The vehicle speeds, braking distances, skid mark distances, and deceleration histories were recorded. From these data. coefficients of friction and vehicle pre-skidding speeds for the tested road surface were calculated. The pre-skidding speeds were then compared to the actual pre-braking speeds of the vehicles in order to establish relationships between pre-skidding and pre-braking speed. A correlation between the Pre-skidding speed and the actual pre-braking speed was established for the study data.

Calculation of Brake Onset Velocity for Non-ABS Vehicle on Dry Asphalt Pavement (건조한 노면에서 Non-ABS 차량의 제동시점 속도계산 방법)

  • Kim, Kee-Nam;Ok, Jin-Kyu;Kim, Min-Seok;Mun, Won-Kil;Park, Su-Jin;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.109-114
    • /
    • 2007
  • Skid mark and coefficient of friction are usually utilized to calculate the velocity and behavior of vehicles. For a critical case such as traffic accident reconstruction, however, the initial velocity of the car should be calculated precisely. In this study, the skid marks on dry asphalt pavement were measured, and the velocity at brake onset was precisely recovered. A passenger car with new tires and non-contact optical speedometer were set up for the tests. A new methodology to determine the more precise velocity for Non-ABS vehicle at braking onset were suggested.

The FE-SM/SONN for Recognition of the Car Skid Mark (자동차 스키드마크 인식을 위한 FE-SM/SONN)

  • Koo, Gun-Seo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.125-132
    • /
    • 2012
  • In this paper, We proposes FE-SM/SONN for recognizing blurred and smeared skid mark image caused by sudden braking of a vehicle. In a blurred and smeared skid marks, tread pattern image is ambiguous. To improve recognition of such image, FE-SM/SONN reads skid marks utilizing Fuzzy Logic and distinguishing tread pattern SONN(Self Organization Neural Networks) recognizer. In order to substantiate this finding, 48 tire models and 144 skid marks were compared and overall recognition ratio was 89%. This study showed 13.51% improved recognition compared to existing back propagation recognizer, and 8.78% improvement than FE-MCBP. The expected effect of this research is achieving recognition of ambiguous images by extracting distinguishing features, and the finding concludes that even when tread pattern image is in grey scale, Fuzzy Logic enables the tread pattern recognizable.