• Title/Summary/Keyword: Tire design development

Search Result 45, Processing Time 0.023 seconds

Development on Integrated Pyrolysis Cogeneration System for Waste Tire Recycling Treatment (폐타이어 재활용 처리를 위한 열분해 열병합 복합공정기술개발)

  • Kim, Seong-Yeon;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1990-1995
    • /
    • 2008
  • The thermochemical recycling of waste tires by pyrolysis is studied to recover the value added three by-products; a pyrolytic carbon black, a pyrolytic oil, and a non-condensable gas. The exhausted energy from pyrolysis of waste tires is converted for electricity power and process steam in cogeneration system. The characteristics of the pyrolysis recovered by-products as alternative energy resource are investigated with the design of a demonstration and a commercialization plant including cogeneration system, as called integrated pyrolysis cogeneration system.

  • PDF

Spin-up, Spring-back Load Analysis of KC-100 Nose Landing Gear using Explicit Finite Element Method (외연적 유한요소법을 이용한 KC-100 전방착륙장치 Spin-up, Spring-back 하중 해석)

  • Park, Ill-Kyung;Kim, Sung-Jun;Ahn, Seok-Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2011
  • The spin-up and the spring-back are most severe load cases in the aircraft landing gear design. These load cases are caused by reciprocal action of complex physical phenomenon such as the friction between a tire and ground, inertia of the rotation of a tire and the flexibility of a landing gear structure. Generally, the empirical formula or the theoretical formula is used to calculate the spin-up and spring-back load in the early stage of the development program of the aircraft landing gear. After the materialization of the design of a landing gear, spin-up and spring-back load are acquired by the free drop test. In this study, the spin-up and the spring-back load of the rubber shock absorber type KC-100 nose landing gear are calculated by the explicit finite element analysis. Through this analysis, more accurate and realistic spin-up and spring back loads could be applied to the early phase of the development of the aircraft landing gear.

A Study on the Development of EV Powertrain System Simulator for Education and Training (교육훈련용 EV 동력 시스템 시뮬레이터 개발에 대한 연구)

  • Dong-June Shin
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2023
  • The biggest core task in the new modern automobile industry lies in the development of eco-friendly vehicles with the goal of 0% emissions by the EU by 2035. Accordingly, in an era where the industry is rapidly changing with electric vehicles, education and training on EV electric vehicles are urgently needed. In this study, by developing a core EV powertrain system simulator excluding the chassis platform (body, tire, etc.) used identically to existing internal combustion locomotives, Understand the EV powertrain system, including mechanical engineering, electrical engineering, and electronic engineering applications. Through this course, we intend to use it as a medium to develop engineering and convergence development capabilities.

A Development of Vibration Isolation Technology for a Large Structure using Experimental Research (실험적 기법을 이용한 대형구조물 교통진동 차진기술 개발)

  • Ryu, B.J.;Lee, H.G.;Son, S.W.;Lee, G.S.;Han, H.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.537-542
    • /
    • 2006
  • This paper deals with the vibration isolation techniques for a large structure using experimental research. In the case of vibration isolation for the vicinity of a subway or a railroad station, most of vibration isolation techniques using isolation materials with high isolation efficiency only, have been applied. Therefore, the quantitative evaluation and design technologies are required for a vibration isolation of large structures. In this study, firstly, vibration characteristics due to train or subway are analyzed. Secondly, the performance of existing vibration isolation materials such as precision isolation material, elastomer is estimated through the experiments. Thirdly the performance of tire isolation material and its frame is tested and evaluated.

  • PDF

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

Development of the Design Program of the Brake System for the Tractor-Semitrailer Vehicle (Tractor-Semitrailer 차량의 브레이크 시스템 설계 프로그램 개발)

  • 서명원;권성진;박윤기;양승환;박병철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.108-120
    • /
    • 2001
  • In this paper, the braking performance considering the dynamic weight is analyzed about the tractor-semitrailer vehicle. The basic brake performance, the parking brake performance, the emergency brake performance and the locking point deceleration etc. are to be calculated for the brake system design of the tractor-semitrailer vehicle. This braking performance is related to traffic regulations and braking characteristics according to the vehicle deceleration, the tire-road friction coefficient and specifications of the air brake system. The design program for the braking performance based on various design variables of the vehicle and the air brake system is developed integrating the analysis functions. This design program is developed by an object oriented programming method that is windows based. GUI (Graphic User Interface) function and the convenience of operating are greatly considered.

  • PDF

Model-Driven Design Framework for Future Combat Vehicle Development based on Firepower and Mobility: (2) Integrated Design Optimization (화력과 기동의 통합성능을 고려한 미래 전투차량의 해석 기반 설계 프레임웍 연구: (2) 통합최적설계)

  • Lim, Woochul;Lim, Sunghoon;Kim, Shinyu;Min, Seungjae;Lee, Tae Hee;Ryoo, Jae Bong;Pyun, Jai-Jeong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.324-331
    • /
    • 2014
  • In the design of a combat vehicle, various performances such as firepower, mobility and survivability, etc., should be considered. Furthermore, since these performances relate to each other, design framework which can treat an integrated system should be employed to design the combat vehicle. In this paper, we use empirical interior ballistic and 3D combat vehicle analyses for predicting firepower and mobility performances which are developed in previous study (1) integrated performance modeling. In firepower performance, pitch and roll angle by sequential firing are considered. In mobility performance, vertical acceleration after passing through a bump is regarded. However, since there are many design variables such as mass of vehicle, mass of suspension, spring and damping coefficient of suspension and tire, geometric variables of vehicle, etc., for firepower and mobility performance, we utilize analysis of variance and quality function deployment to reduce the number of design variables. Finally, integrated design optimization is carried out for integrated performance such as firepower and mobility.

Design of C-EPS (Column type - Electric Power Steering) Simulator and Development of Control Algorithm (C-EPS (C-type Electric Power Steering) 시뮬레이터 설계 및 제어 알고리즘 개발)

  • Park, Myung-Wook;Moon, Hee-Chang;Kim, Jung-Ha;Crane III, Carl D.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.566-571
    • /
    • 2010
  • EPS (Electric Power Steering) is important device for improving vehicle's dynamics and static performances. This paper deals with simulator design for C-EPS (Colum type-EPS), development assist and returnability control algorithm. First, C-EPS system model was simply designed because EPS system is complex control system that has many unknown variables. These parameters were simplified through assumptions. Second, C-EPS simulator was designed for development of control algorithm. This simulator has SAS (Steering Angle Sensor), dual torque sensor, dual load cell for measuring rack force, dual linear actuator for generating tire force and Data Acquisition System. Using this simulator, control methods ware tested. Third, control algorithm was designed for torque assist and returnability. Assist torque map and returnability torque map were found by lots of simulation test. These torque maps were tuned for EPS actuator control. The simulation result was compared with non-EPS system result. In this research, the C-EPS simulator was designed for development of control algorithm about torque assistant and returnability. Using this simulator, control algorithm was improved.

New Anisoparametric 3-Node Elements for Out-of-Plane Deformable Curved Beam

  • Kim, Moon-Joon;Min, Oak-Key;Kim, Yong-Woo;Moon, Won-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.272-282
    • /
    • 2000
  • Based on numerical reduced minimization theory, new anisoparametric 3-node elements for out-of-plane curved beam are developed. The elements are designed to be free from spurious constraints. In this paper, the effect of the Jacobian upon numerical solution is analyzed and predicted through reduced minimization analysis of anisoparametric 3-node elements with different Jacobian assumption. The prediction is verified by numerical tests for circular and spiral out-of-plane deformable curved beam models. This paper proposes two kinds of 3-node elements with 7-DOF; one element employs 2-point integration for all strains, and the other element uses 3-point integration with a constant Jacobian within element for calculation of shear strain.

  • PDF

Sliding Mode Control for a High-Load Wheeled Mobile Robot (중하중을 받는 이동로붓의 슬라이딩모드 제어)

  • 홍대희;정재훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.145-153
    • /
    • 2000
  • This paper discusses the dynamic modeling and robust control development for a differentially steered mobile robot subject to wheel slip according to high load. Consideration of wheel slip is crucial for high load applications such as construction automation tasks because wheel slip acts as a severe disturbance to the system. It is shown that the uncertainty terms due to the wheel slip satisfy the matching condition for the sliding mode control design. From the full dynamic model of the mobile robot, a reduced ideal model is extracted to facilitate the control design. The sliding mode control method ensures the dynamic tracking performance for such a mobile robot. Numerical simulation shows the promise of the developed algorithm.

  • PDF