• Title/Summary/Keyword: Tire Test Bed

Search Result 4, Processing Time 0.02 seconds

Development of Tire Test Bed for Dynamic Behavior Analysis of Vehicles on Off-roads (비포장노면 차량 거동 분석을 위한 타이어 테스트베드 개발)

  • Lee, Dae-Kyung;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.29-35
    • /
    • 2022
  • When a vehicle is driven off a road surface, the deformations of the road surface and tire are combined. Consequently, the dynamic behavior of wheel movement becomes difficult to predict and control. Herein, we propose a tire test bed to capture the dynamic behavior of tires moving on sand and soil. Based on this study, it is discovered that the slip rate can be controlled, and the vertical force can be measured using a load cell. The test results show that this test bed can be useful for capturing the dynamic behavior of the tire and validating dynamic simulations. In fact, the tire test bed developed in this study can be used to verify the results of computer simulations. In addition, it can be used for basic experiments pertaining to the speed control of unmanned autonomous vehicles.

Estimation of the Maximum Friction Coefficient of the Rough Terrain to Control the Mobile Robots (주행로봇 제어를 위한 험지의 최대마찰계수 추정)

  • Kang, Hyun-Suk;Kwak, Yoon-Keun;Choi, Hyun-Do;Jeong, Hae-Kwan;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1062-1072
    • /
    • 2008
  • When mobile robots perform the mission in the rough terrain, the traversability depended on the terrain characteristic is useful information. In the traversabilities, wheel-terrain maximum friction coefficient can indicate the index to control wheel-terrain traction force or whether mobile robots to go or not. This paper proposes estimating wheel-terrain maximum friction coefficient. The existing method to estimate the maximum friction coefficient is limited in flat terrain or relatively easy driving knowing wheel absolute velocity. But this algorithm is applicable in rough terrain where a lot of slip occurred not knowing wheel absolute velocity. This algorithm applies the tire-friction model to each wheel to express the behavior of wheel friction and classifies slip-friction characteristic into 3 major cases. In each case, the specific algorithm to estimate the maximum friction coefficient is applied. To test the proposed algorithm's feasibility, test bed(ROBHAZ-6WHEEL) simulations are performed. And then the experiment to estimate the maximum friction coefficient of the test bed is performed. To compare the estimated value with the real, we measure the real maximum friction coefficient. As a result of the experiment, the proposed algorithm has high accuracy in estimating the maximum friction coefficient.

Odor Removal by Using Compost and Granular Scrap Tires (퇴비 및 폐타이어 Granule을 이용한 악취 제거)

  • Chung, Yoon-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 1999
  • In spite of low energy requirement, and operation and construction cost, biofilters with soil beds have not been operated efficiently. Because of excess moisture in winter and rainy periods, saturated pores in the bed prevent passage and sorption of odorous compounds. Sometimes this results in septic conditions that release previously sorbed and oxidized sulfur. Therefore, an economical and effective alternative needs to be developed. The objectives of this study were to confirm applicability of the granular scrap tires with compost for treating odorous gas as well as to obtain optimum design parameters for proposed system. In lab-scaled test, multiple stage reactors had lower headloss than a single stage reactor and less headloss was occurred for the gas with higher moisture content. For practical purpose, pilot-scaled reactor was operated to remove odor from septic tank, manure and animal wastewater treatment plant and composting machine. According to the results of pilot scaled test, $H_2S$ can be always removed completely and ammonia/amine can be removed excellently when proper moisture content is provided. The results from lab and pilot test showed that granular scrap tire could be replaced with soil as supporting material for biofilter showed excellent drainage because of its ability to reject moisture.

  • PDF

Effect of Temperature on the Nitrogen Removal of Municipal Wastewater in a Pilot-scale Moving Bed Biofilm Reactor with Waste-tire Media (폐타이어 담체를 이용한 파일럿 규모 유동상 생물막 공정에서 하수의 질소제거에 미치는 온도 영향)

  • Park, Woon-Ji;Ahn, Johng-Hwa;Lee, Chan-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.507-516
    • /
    • 2008
  • This research was conducted to elucidate the effect of temperature on the nitrogen removal of municipal wastewater with waste-tire media. The experiments were carried out in laboratory-scale batch reactor and pilot-scale moving bed biofilm reactor filled at a 0.15 filling ratio with waste-tire media, respectively. In batch tests, specific nitrification rate(SNR) with media was 3.4 mg NH$_4^+$-N/g Mixed-Liquor Volatile Suspended Solid(MLVSS)$\cdot$hr, compared with 1.7 mg NH$_4^+$-N/g MLVSS$\cdot$hr without media. In pilot-scale test with media, total nitrogen removal efficiency increased from 53 $\pm$ 8% to 76 $\pm$ 5% as the temperature increased from 9$\sim$10$^{\circ}C$ to 20$\sim$24$^{\circ}C$. At the temperature of 9$\sim$10$^{\circ}C$, 10$\sim$20$^{\circ}C$, and 20$\sim$24$^{\circ}C$, the SNRs were 0.8 $\pm$ 0.5, 3.1 $\pm$ 1.9, and 3.4 $\pm$ 2.1 mg NH$_4^+$-N/g MLVSS$\cdot$hr and the specific denitrification rates(SDNR) were 0.6 $\pm$ 0.2, 1.1 $\pm$ 0.6, 1.4 $\pm$ 0.6 mg NO$_3^-$-N/g MLVSS.hr, respectively. The overall activities of biomass in anaerobic, anoxic, and oxic zones at 20$\sim$24$^{\circ}C$ increased to 22, 20, and 15%, compared with those at 9$\sim$10$^{\circ}C$, respectively. The activity distribution of Nitrosomonas and Nitrobacter also increased with the increase of temperature.