• Title/Summary/Keyword: Tire Durability

Search Result 61, Processing Time 0.036 seconds

The Effect of the Exposed Aggregate Concrete Pavement on the Reducing Traffic Noise Emission

  • Moon, Han-Young;Ha, Sang-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.352-359
    • /
    • 2003
  • Portland cement concrete (PCC) pavements are more durable and have superior surface friction compared to most dense-graded asphalt. However, data collected to date generally show PCC pavements to create more noise than asphaltic surfaces. Recent research has shown that some of the new concrete pavement textures are worthy of further examination. One of these, exposed aggregate surfaces, appear to provide better noise quality characteristics as well as good frictional characteristics and durability. In this paper, we considered the relationship between noise level and various textures of exposed aggregate concrete (EAC) pavement by tire impact noise measurement. As the results of that, it was suggested that optimum surface texture and manufacturing condition of EAC in order to reduce tire and pavement interaction noise. Conclusively, we would like to recommend optimum condition of EAC pavement at the respects of materials and treatment. Furthermore, Frequency spectrum as well as A-weighted noise level was also evaluated to analyze properties of noise between PCC and EAC.

Durable and Sustainable Strap Type Electromagnetic Harvester for Tire Pressure Monitoring System

  • Lee, Soobum;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.473-480
    • /
    • 2013
  • A new concept design of electromagnetic energy harvester is proposed for powering a tire pressure monitoring sensor (TPMS). The thin coil strap is attached on the circumferential surface of a rim and a permanent magnet is placed on the brake caliper system. When the wheel rotates, the relative motion between the magnet and the coil generates electrical energy by electromagnetic induction. The generated energy is stored in a storage unit (rechargeable battery, capacitor) and used for TPMS operation and wireless signal transmission. Innovative layered design of the strap is provided for maximizing energy generation. Finite Element Method (FEM) and experiment results on the proposed design are compared to validate the proposed design; further, the method for design improvement is discussed. The proposed design is excellent in terms of durability and sustainability because it utilizes the everlasting rotary motion throughout the vehicle life and does not require material deformation.

Evaluation on Fatigue Characteristics of Tire Sidewall Rubber according to Aging Temperature

  • Jun, Namgyu;Moon, Byungwoo;Kim, Yongseok;Koo, Jae-Mean;Seok, Chang-Sung;Hong, Ui Seok;Oh, Min Kyeong;Kim, Seong Rae
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.167-172
    • /
    • 2017
  • Ultra-high performance (UHP) tires, for which demand has recently surged, are subject to severe strain conditions due to the low aspect ratio of their sidewalls. It is important to ensure sidewall material durability, since a sudden tire sidewall breakage during vehicle operation is likely to cause a major accident. In the automotive application of rubber parts, cracking is defined as a failure because when cracks occur, the mechanical properties of rubber change. According to Mars, Andre et al., strain and strain energy density (SED) are mainly used as a failure parameters and the SED is generally used as a fatigue damage parameter. In this study, the fatigue life curves of sidewall rubber of tires were determined by using the SED as fatigue damage parameter while the effect of aging on fatigue life was evaluated after obtaining the SED-Nf curves according to aging condition.

Experimental Study on the Strength of Concrete Specimens Mixed with Tire Chips (폐타이어 입자혼입 콘크리트의 강도별 특성 실험)

  • Son, Ki-Sang
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.84-90
    • /
    • 2005
  • This study is to use results of the experiment on the influence to the strength by mixing powders of wasted tires into regular remicon within a range of little effectiveness in durability, applicability, economic aspect, and workability, to put it to practical use and to apply as basic data from a view of recycling wasted tires as construction materials. And the concrete, which was mixed with 10mm particles with ratio of $0.5\%\;and\;1.0\%$ respectively at 270 of mixing strength, was reduced by $27\%$ in compressive strength compared to normal concrete, whereas concrete mixed with other than 10mm particles showed lower decrease ratio compared to the former by reducing only $1.0\%\~1.5\%$. it is found that as strength increases, the less in quantity of aggregate and the more increase in quantity of cement. When considered to the above result, it is estimated that concrete mixed with wasted tire particles could be better used in conditions of compressive force rather than tensile force, and could also be used for structures with flexural strengths as well. In conclusion, higher strengths could be made using waste tire mix.

Current and Future Trends of Accelerators and Antidegradants for the Tire Industry

  • Hong, Sung-W.
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.156-176
    • /
    • 1999
  • Rubber chemicals such as accelerators, antidegradants, vulcanizing agents, processing agents and retarders are very important to the production and protection of tires and rubber goods. The use of accelerators and antidegradants are evaluated in various tire components. This paper will focus on how to vulcanize tires economically and maintain the physical properties of each tire component without severe degradation due to oxygen, heat and ozone. Also, new non-nitrosoamine accelerators and non-staining antiozonants will be discussed. Lastly, the future requirements of antidegradants and accelerators in the tire industry will be reviewed. Tires have been vulcanized with Sulfenamides as primary accelerators and either Guamdine's or Thiurams as secondary accelerators to achieve proper properties at service conditions. However, interior components such as the carcass can be vulcanized with Thiazoles as a primary accelerator to cure faster than the external components. Using the combination of Sulfenamide with secondary accelerators in a tire tread compound and the combination of a Thiazole and Guanidine in a carcass compound will be presented with performance data. Uniroyal Chemical and another Rubber Chemical Manufacturer have developed, "Tetrabenzyl Thiuram Disulfide," (TBzTD) as a non-Nitrosoamine accelerator, which could replace Nitrosoamine generating Thiurams. This new accelerator has been evaluated in a tread compound as a secondary accelerator. Also, Flexsys has developed N-t-butyl-2-benzothiazole Sulfenamide (TBSI) as a non-Nitrosoamine accelerator which could replace 2-(Morpholinothio) -benzothiazole (MBS), a scorch delayed Sulfendamide accelerator. TBSI has been evaluated in a Natural Rubber (NR) belt skim compound vs. MBS. An optimum low rolling resistant cure system has been developed in a NR tread with Dithiomorpholine (DTDM). Also, future requirements for developing accelerators will be discussed such as the replacement of DTDM and other stable crosslink systems. Antidegradants are divided into two different types for use in tire compounds. Internal tire compounds such as apex, carcass, liner, wire breaker, cushion, base tread and bead compounds are protected by antioxidants against degradation from oxygen and heat due to mechanical shear. The external components such as sidewall, chafer and cap tread com-pounds are protected from ozone by antiozonants and waxes. Various kinds of staining and non-staining antioxidants have been evaluated in a tire carcass compound. Also, various para-phenylene diamine antiozonants have been evaluated in a tire sidewall compound to achieve the improved lifetime of the tire. New non-staining antiozonants such as 2, 4, 6-tris-(N-1, 4-dimethylpentyl-p-phenylene diamine) 1, 3, 5 Trizine (D-37) and un-saturated Acetal (AFS) will be discussed in the tire sidewall to achieve better appearance. The future requirements of antidegradants will be presented to improve tire performance such as durability, better appearance and longer lasting tires.

  • PDF

Compound waterproofing method of green roof using copper barrier sheet and recycled tire melting liquid waterproofing material that reinforced treatments are valve and glass fiber mesh. (알루미늄 판막과 유리섬유를 합지한 구리방근시트와 폐타이어 용융액상 도막방수재를 이용한 옥상녹화 복합방수공법)

  • Kim, Young chan;Cho, Il Kyu;choi, sung min;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.173-178
    • /
    • 2008
  • This is green roof bottom system which composed by aluminum valve and glass fiber together as major reinforcement, so the cooper sheet can have root proof, and using recycled tire gel-type membrane waterproofing system which dost not contains VOCs. The copper sheet reduce the plants' root growing, so it helpes to maintain the waterproofing layer and stability of root proofing. Gel type membrane waterproofing system can do waterproofing, stress dispersion, and reducing leakage expansion. So those two materials can help each other to make green roof bottom layer would have the stability and durability.

  • PDF

Design Technique for Durability Improvement of Military Vehicle Wheel (군용차량 휠 조립체 내구성 향상 방법론 연구)

  • Shin, Cheolho;Kang, Tae Woo;Kim, Seonjin;Na, Chul Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.521-528
    • /
    • 2018
  • Military vehicles use run-flat wheels for emergency situations. Run-flat wheels can run required distance in a defined duration with the pressure loss tire. For the application of a run-flat system, wheels are designed in 2 pieces, including an inner rim and outer rim. These rims are assembled using clamping bolts. Clamping bolts determine the durability of military vehicle wheels because fracture of clamping bolts account for most wheel failures. For improving wheel durability, clamping bolt durability must be improved. In this study, wheel test conditions and bolt design were investigated. Existing test standards are not sufficient to conduct endurance tests. Supplementary conditions were investigated. Using these modified test conditions, the durability of wheels including clamping bolts was tested and verified. Results found the durability of wheels improved more than 168%. This study also proposes improvements in the design process of clamping bolts.

Characterization of Textures for Low Noise Concrete Pavement

  • Moon, Han-Young;Ha, Sang-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.461-464
    • /
    • 2003
  • Portland Cement Concrete (PCC) pavements have the advantage of durability and superior surface friction when compared to most dense-graded asphalt. However, data collected to date generally show PCC pavements to create more noise than asphaltic surfaces. As the results of research, surfaces of exposed aggregate, tining and grooving concrete pavements appear to provide better noise quality characteristics as well as good frictional characteristics and durability. In this paper, several methods of texturing were considered to reduce tire/pavement noise. As the results of this paper, PCC pavements with special texturing have superior surface friction as well as noise reductions when compared to conventional PCC pavement. Especially, Exposed Aggregate Concrete (EAC) surface appears to provide better noise quality characteristics. Conclusively, if overall noise and safety are considered simultaneously, EAC pavement that provides satisfactory friction as well as better noise reductions is suggested.

  • PDF

A Study on Polyurethane Waterproof Material Containing Rubber Particles (고무분말을 혼입한 폴리우레탄 도막방수재에 대한 연구)

  • Kim, Jin-Kuk;Jeong, Dong-Sun
    • Elastomers and Composites
    • /
    • v.29 no.3
    • /
    • pp.207-212
    • /
    • 1994
  • Recently, the develpment of waterproof techniques has been required in morden building field. It is undoubt that one of the best materials for waterproof is polyurethane. Polyurethanes have advantages such as good adhesive ability, durability, weatherproof. However, they have disadvantages like high cost, delicate varnish layer, swelling problem. In this study, we found that the polyurethane with rubber particle of waste tire can solve those problems. We concluded that 10% of rubber particles containing polyurethane was recommened as the waterproof materials.

  • PDF

A Study on the Effect of the Shape of the Exhaust Port on the Flow and Temperature Distribution in the Drying Part of the MRG(Mechanical Rubber Goods) Reinforcing Yarn Manufacturing System (MRG(Mechanical Rubber Goods) 보강사 제조시스템의 건조부에서의 배기구 형상이 유동 및 온도 분포에 미치는 영향에 관한 연구)

  • Kim, Hwan Kuk;Kwon, Hye In;Do, Kyu Hoi
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.109-116
    • /
    • 2022
  • Tire codes are made of materials such as hemp, cotton, rayon, nylon, steel, polyester, glass, and aramid are fiber reinforcement materials that go inside rubber to increase durability, driveability, and stability of vehicle tires. The reinforcement of the tire cord may construct a composite material using tires such as automobiles, trucks, aircraft, bicycles, and fibrous materials such as electric belts and hoses as reinforcement materials. Therefore, it is essential to ensure that the adhesive force between the rubber and the reinforced fiber exhibits the desired physical properties in the rubber composite material made of a rubber matrix with reinforced fibers. This study is a study on the heat treatment conditions for improving the adhesion strength of the tire cord and the reinforced fiber for tires. The core technology of the drying process is a uniform drying technology, which has a great influence on the quality of the reinforcement. Therefore, the uniform airflow distribution is determined by the geometry and operating conditions of the dryer. Therefore, this study carried out a numerical analysis of the shape of a drying nozzle for improving the performance of hot air drying in a dryer used for drying the coated reinforced fibers. In addition, the flow characteristics were examined through numerical analysis of the study on the change in the shape of the chamber affecting drying.