• Title/Summary/Keyword: Tip-in/out

Search Result 662, Processing Time 0.025 seconds

Computational and Experimental Study of Effects of Guide Vanes and Tip Clearances on Performances of Axial flow Fans (선박용 송풍기의 날개 끝 간격과 정익이 성능에 미치는 영향에 대한 전산 유체 해석)

  • Lee, Sung-Su;Kim, Hak-Sun;Nam, Kwang-Hyun;Hong, Jae-Ik;Chun, Seung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.24-32
    • /
    • 2004
  • The effects of guide vanes and tip clearances on the characteristics nf axial flow fans are investigated both computationally and experimentally. Performance test of fans carried out in full scale shows considerable effects of tip clearance between rotor tip and duct on the characteristics of fans. The tested results are compared with the computation based on the finite volume method to solve the Navier-Stoke equations with $textsc{k}$-$\varepsilon$ turbulence model. The comparison shows good agreements between experimental and computational results. In addition, the effects of shape of guide vanes are numerically studied. The results show that increased volume of separated region around the guide vane reduces the recovery of tangential component of kinetic energy in the wake, resulting in loss of efficiency

Fault Detection Method of Pipe-type Cantilever Beam with a Tip Mass (말단질량을 갖는 원형강관 캔틸레버 보의 결함탐지기법)

  • Lee, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.764-770
    • /
    • 2015
  • A crack identification method using an equivalent bending stiffness and natural frequency for cracked beam is presented. Modal properties of cantilever beam with a tip mass is identified by applying the boundary conditions to a general solution. An equivalent bending stiffness for cracked beam based on an energy method is used to identify natural frequencies of cantilever thin-walled pipe with a tip mass, which has a through-the-thickness crack, subjected to bending. The identified natural frequencies of the cracked beam are used in constructing training patterns of neural networks. Then crack location and size are identified using a committee of the neural networks. Crack detection was carried out for an example beam using the proposed method, and the identified crack locations and sizes agree reasonably well with the exact values.

Interaction of Tip Vortices Generated by a Split Wing

  • Youn, Won Suk;Han, Yong Oun;Lee, Dong Yeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.39-45
    • /
    • 2001
  • To reduce the strength of tip vortex of the fixed wing, a horizontal wing-let splitted into two parts was utilized, and the interaction between vortices generated by these wing-lets was investigated by the hot-wire anemometry. The process of vortex forming and merging was clarified by measurements of velocity vectors and their contours at five downstream cross-sections; 0.05C(chord length), 0.2C, 0.5C, 1.0C and 2.0C. Both vortex-lets formed by each wing-lets rotate counterclockwise and merge into a larger single vortex within a short downstream distance, 0.5C in this case. The strength of the merged tip vortex turned out to become smaller than that of the plain wing tip near the vortex core.

  • PDF

Fatigue Crack-Tip Stress Mapping Using Neutron Diffraction

  • Choi, Gyudong;Lee, Min-Ho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.690-693
    • /
    • 2015
  • Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.

Tip-over Terrain Detection Method based on the Support Inscribed Circle of a Mobile Robot (지지내접원을 이용한 이동 로봇의 전복 지형 검출 기법)

  • Lee, Sungmin;Park, Jungkil;Park, Jaebyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1057-1062
    • /
    • 2014
  • This paper proposes a tip-over detection method for a mobile robot using a support inscribed circle defined as an inscribed circle of a support polygon. A support polygon defined by the contact points between the robot and the terrain is often used to analyze the tip-over. For a robot moving on uneven terrain, if the intersection between the extended line of gravity from the robot's COG and the terrain is inside the support polygon, tip-over will not occur. On the contrary, if the intersection is outside, tip-over will occur. The terrain is detected by using an RGB-D sensor. The terrain is locally modeled as a plane, and thus the normal vector can be obtained at each point on the terrain. The support polygon and the terrain's normal vector are used to detect tip-over. However, tip-over cannot be detected in advance since the support polygon is determined depending on the orientation of the robot. Thus, the support polygon is approximated as its inscribed circle to detect the tip-over regardless of the robot's orientation. To verify the effectiveness of the proposed method, the experiments are carried out using a 4-wheeled robot, ERP-42, with the Xtion RGB-D sensor.

Study on Cantilever Beam Tip Response with Various Harmonic Frequencies by Using EDISON Co-rotational Plane Beam-Dynamic Tip Load (EDISON Co-rotational Plane Beam-Dynamic Tip Load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구)

  • Park, Chul-Woo;Joo, Hyun-Shig;Ryu, Han-Yeol;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.477-483
    • /
    • 2015
  • In this paper, Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

Influence of Screw Rotors Tip Angle on Mixing Performance for One Novel Twin-screw Kneader (2축 스크류 니더의 설계에서 스크류 로터 팁의 각도가 믹싱성능에 미치는 영향)

  • Wei, Jing;Chen, Dabing;Zhou, Dongming;Zhang, Aiqiang;Yang, Yuliang
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.441-452
    • /
    • 2015
  • Twin-screw kneader is an efficient polymer processing equipment. In this paper, the mixing performance of one novel intermeshing counter-rotating twin-screw kneader with different tip angles of the male rotor is simulated using the mesh superimposition technique (MST). Statistical analysis is carried out for the flow field using particle tracking technique, and distributive mixing performance is evaluated using the residence time distribution and segregation scale, while the dispersive mixing performance is estimated using the parameters such as shear rate, stretching rate and mixing index. The results show that the best distributive mixing performance is achieved when the tip angle is 0o, while the optimal dispersive mixing performance is obtained when the tip angle is 20o. The results in this paper provide a data basis for the selection of parameters and optimization of the performance for the screw rotors.

Numerical study on bearing behavior of pile considering sand particle crushing

  • Wu, Yang;Yamamoto, Haruyuki;Yao, Yangping
    • Geomechanics and Engineering
    • /
    • v.5 no.3
    • /
    • pp.241-261
    • /
    • 2013
  • The bearing mechanism of pile during installation and loading process which controls the deformation and distribution of strain and stress in the soil surrounding pile tip is complex and full of much uncertainty. It is pointed out that particle crushing occurs in significant stress concentrated region such as the area surrounding pile tip. The solution to this problem requires the understanding and modeling of the mechanical behavior of granular soil under high pressures. This study aims to investigate the sand behavior around pile tip considering the characteristics of sand crushing. The numerical analysis of model pile loading test under different surcharge pressure with constitutive model for sand crushing is presented. This constitutive model is capable of predicting the dilatancy of soil from negative to positive under low confining pressure and only negative dilatancy under high confining pressure. The predicted relationships between the normalized bearing stress and normalized displacement are agreeable with the experimental results during the entire loading process. It is estimated from numerical results that the vertical stress beneath pile tip is up to 20 MPa which is large enough to cause sand to be crushed. The predicted distribution area of volumetric strain represents that the distributed area shaped wedge for volumetric contraction is beneath pile tip and distributed area for volumetric expansion is near the pile shaft. It is demonstrated that the finite element formulation incorporating a constitutive model for sand with crushing is capable of producing reasonable results for the pile loading problem.

Crack detection method for step-changed non-uniform beams using natural frequencies

  • Lee, Jong-Won
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.173-181
    • /
    • 2022
  • The current paper presents a technique to detect crack in non-uniform cantilever-type pipe beams, that have step changes in the properties of their cross sections, restrained by a translational and rotational spring with a tip mass at the free end. An equation for estimating the natural frequencies for the non-uniform beams is derived using the boundary and continuity conditions, and an equivalent bending stiffness for cracked beam is applied to calculate the natural frequencies of the cracked beam. An experimental study for a step-changed non-uniform cantilever-type pipe beam restrained by bolts with a tip mass is carried out to verify the proposed method. The translational and rotational spring constants are updated using the neural network technique to the results of the experiment for intact case in order to establish a baseline model for the subsequent crack detection. Then, several numerical simulations for the specimen are carried out using the derived equation for estimating the natural frequencies of the cracked beam to construct a set of training patterns of a neural network. The crack locations and sizes are identified using the trained neural network for the 5 damage cases. It is found that the crack locations and sizes are reasonably well estimated from a practical point of view. And it is considered that the usefulness of the proposed method for structural health monitoring of the step-changed non-uniform cantilever-type pipe beam-like structures elastically restrained in the ground and have a tip mass at the free end could be verified.

A Numerical Study on Tip Rake HAT Impeller Performance for Tidal Stream Power (조류발전용 팁 레이크 HAT 임펠러 성능 수치해석 연구)

  • Shin, Byung-Chul;Kim, Moon-Chan;Do, In-Rok;Rhee, Shin-Hyung;Hyun, Beom-Soo;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.263-269
    • /
    • 2010
  • The present study deals with the investigation about the improvement of performance of tidal stream turbine blade (HAT) with tip rake. HAT impeller has sometimes experienced noise and vibration by Tip vortex which causes even erosion and severe efficiency loss to the blade, The newly proposed tip rake impeller can make the tip vortex week compared with a normal impeller by preventing the three dimensional effect at tip region. In order to find out the optimum rake impeller, three cases have been designed and the performance of the designed rake impellers has been validated by the commercial CFD code(Fluent). The efficiency of optimized rake impeller was up to 4.6% higher than the conventional impeller. The more parametric study for high efficiency and good cavitation performance is expected to be conducted in a near future.