• Title/Summary/Keyword: Tip-effect

Search Result 1,145, Processing Time 0.023 seconds

Effect of IAA and Kinetin on Induction of Protonemal Gemmae and Gametophytes of Hypnum plumaeforme Wilson (털깃털이끼(Hypnum plumaeforme Wilson) 원사체 무성아와 배우체의 형성에 미치는 IAA와 Kinetin의 영향)

  • Ahmed, Md. Giush Uddin;Lee, Cheol Hee
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.1
    • /
    • pp.9-14
    • /
    • 2010
  • This study was conducted to examine the effects of IAA and kinetin on induction of gemmae and gametophytes in Hypnum plumaeforme moss during tissue culture. Explants were obtained from sterilized gametophyte tips cultured on solid basal medium containing Knop's major salts and Nitsch and Nitsch's trace elements. After culture, inoculated gametophyte tip produced protonema firstly, changed to new gametophytes after four weeks. Aseptic gametophytes were chopped and inoculated on the same media containing 0.01, 0.1, 1 and $10{\mu}M$ of IAA and kinetin. As a result, secondary protonemata as well as protonemal gemmae were formed from gametophytes. But protonemal gemmae formation was varied according to the concentration of IAA and kinetin. Lower concentration of IAA and kinetin promoted gemma formation and bud induction. Especially, $0.01{\mu}M$ of kinetin showed the highest frequency of bud and gemma production. All the materials, obtained from $0.01{\mu}M$ kinetin medium, were subcultured to media supplemented with 0.01, 0.1, 1 and $10{\mu}M$ of IAA and kinetin again to induce gametophytes. After subculture, protonema and calli were developed from secondary protonema, and induced gametophytes finally. IAA regulated induction and growth of gametophytes, and kinetin influenced gemma formation and gametophyte induction also. All aspects of development of this moss species were governed by the external growth regulators.

Effect of Heating system on Roof garden for Turf growth (옥상 잔디녹화시 Heating system의 효과)

  • Koh, Seuk-Koo;Shin, Hong-Kyun;Tae, Hyun-Sook;Kim, Yong-Seon;Ahn, Gil-Man
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.279-286
    • /
    • 2009
  • This study was carried out to utilize the waste heat from office building for turfgrass culture on a roof garden. Heating system had been installed in the middle of soil profile on the turf areas in the garden plots. The results showed that the installation of heating system increased the shoot density, turfgrass quality, coverage rate, and root length compared with the control plots. The surface temperature of heating plots reached at $10.9^{\circ}C$ when the control plot showed $0^{\circ}C$, however, the soil moisture content was decreased 1.9% by the heating system. When the height of the snow accumulation reached over a 15cm, the it took only 4 days to melt out completely, while the height did not changed those period at the control plots. When the water temperature in boiler increased to $60^{\circ}C$ from a proper temperature of $55^{\circ}C$ in turf growth, the desiccation from leaf tip was started to occur caused by drought stress. More detail research should be followed in stress physiology in turf management in roof garden operation.

Effect of Inhibitors of Ethylene Production on Growth and Gravitropism Inhibited by Oryzalin in Arabidopsis Roots (애기장대 뿌리에서 ethylene 생성 억제제가 oryzalin에 의해 억제된 뿌리 생장과 굴중성 반응에 미치는 영향)

  • Park, Ho Yeon;Ahn, Donggyu;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.280-286
    • /
    • 2021
  • Oryzalin is a herbicide that disrupts the arrangement of microtubules by binding to tubulin, thereby blocking the anisotropic growth of plant cells. Microtubules and microfilaments are cytoskeleton components that have been implicated in plant growth through their influence on the formation of cell walls. Microtubules also play roles in the sedimentation of amyloplasts in the root tip columella cells; this sedimentation is related to gravity sensing and results in downward root growth in the soil for absorption of water and minerals. However, the orientation of microtubules changes depending on the level of ethylene in plant cells. A recent study reported that oryzalin stimulated ethylene production via 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase and caused a concentration-dependent inhibition of root growth and gravitropic responses. The aim of the present study was to investigate the possibility that oryzalin-induced inhibition might be recovered by the application of inhibitors of ethylene production, such as 10-4 M cobalt ions and 10-8 M aminoethoxyvinylglycine (AVG). The inhibition of root growth and gravitropic response was overcome by 10-20% by an 8 hr treatment with cobalt ions or AVG. These results suggest that ethylene levels could regulate root growth and gravitropic responses in Arabidopsis.

3-D Numerical Analysis for the Verification of Bearing Mechanism and Bearing Capacity Enhancement Effect on the Base Expansion Micropile (선단 확장형 마이크로파일의 3차원 수치해석을 통한 지지 메커니즘 및 지지력 증대효과 검증)

  • Lee, Seokhyung;Han, Jin-Tae;Jin, Hyun-Sik;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.2
    • /
    • pp.19-31
    • /
    • 2021
  • Micropiles are cast-in-place piles with small diameters. The advantage of micropile is low construction expense and simple procedures, so it is widely applied to existing buildings and structures for the reinforcement of foundation and seismic performances. The base expansion structure has been developed following the original mechanism of horizontal expansion steps under compressive loading. This kind of structure can be installed at the pile end to improve the bearing capacity by tip area enlargement and horizontal force increment to the pile surface area. However, 'Micropile with base expansion structure' cannot be put into practical use, because detailed verification for the developed technique has not been conducted so far. In this research, 3-D numerical analysis was conducted to figure out the bearing mechanism of base expansion micropile and to verify the bearing capacity improvement compared to the general micropiles. 3-D modelling of micropile with base expansion structure was carried out and input parameter was determined. Bearing mechanism induced by base expansion structure was analyzed by lab-scale modelling, and bearing capacity improvement was verified by field-scale analysis.

Management of Displaced Maxillary Canines by Extraction of the Primary Canine: Factors Affecting Treatment Outcome (유견치 발치를 통해 변위 상악 견치 치료 시 결과에 영향을 미치는 요인 분석)

  • Hanbyeol, Kim;Hyuntae, Kim;Ji-Soo, Song;Teo Jeon, Shin;Hong-Keun, Hyun;Young-Jae, Kim;Jung-Wook, Kim;Ki-Taeg, Jang
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.4
    • /
    • pp.468-480
    • /
    • 2022
  • The purpose of this study was to evaluate the effect of interceptive primary canine extraction in palatally and buccally displaced maxillary permanent canines, and to analyze the clinical and radiographic factors affecting the treatment outcome. 97 maxillary permanent canines from 86 patients whose maxillary permanent canine were in the mesio-occlusal directions and overlapped with the roots of the adjacent teeth were analyzed. In 64 of 97 (66.0%) maxillary permanent canines, the displaced crown was completely deviated from the adjacent lateral incisor root only by extraction of the primary canine. Not only the characteristics of maxillary permanent canines such as bucco-palatal displacement direction, horizontal and vertical position of the crown tip, and presence of apical closure, but also periapical rarefaction on the primary canine and peg-shaped adjacent lateral incisor significantly affected the treatment outcome.

Investigation on relative contribution of flow noise sources of ship propulsion system (선박 추진시스템 유동 소음원 상대적 기여도 분석)

  • Ha, Junbeom;Ku, Garam;Cheong, Cheolung;Seol, Hanshin;Jeong, Hongseok;Jung, Minseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.268-277
    • /
    • 2022
  • In this study, each component of flow noise source of underwater propeller installed to the scale model of the KVLCC2 is investigated and the effect of each noise source on underwater-radiated noise is quantitatively analyzed. The computation domain is set to be the same as the test section of the large cavitation tunnel in the Korea Research Institute of Ship and Ocean Engineering. First, for the high-resolution computation of flow field which is noise source region, the incompressible multiphase Delayed Detached Eddy Simulation is performed. Based on flow simulation results, the Ffowcs Williams and Hawkings integral equation is used to predict underwater-radiated noise and its validity is confirmed through the comparison with the tunnel experiment result. For the quantitative comparison on the contribution of each noise source, the spectral levels of sound pressure and power levels predicted using propeller tip-vortex cavitation, blade surface and rudder surface as the integral region of noise sources are investigated. It is confirmed that the cavitation which is monopole noise source significantly contributed to the underwater-radiated noise than propeller blades and rudder which is dipole noise source, and the rudder have more contribution than propeller blades due to the influence of the propeller wake.

Blade Type Field Vs Probe for Evaluation of Soft Soils (연약지반 평가를 위한 블레이드 타입 현장 전단파 속도 프로브)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Eom, Yong-Hun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.33-42
    • /
    • 2007
  • The assessment of shear wave velocity($V_s$) in soft soils is extremely difficult due to the soil disturbances during sampling and field access. After a ring type field $V_s$ probe(FVP) has been developed, it has been applied at the southern coastal area of the Korean peninsular. This study presents the upgraded FVP "blade type FVP", which minimizes soil disturbance during penetration. Design concerns of the blade type FVP include the tip shape, soil disturbance, transducers, protection of the cables, and the electromagnetic coupling between transducers and cables. The cross-talking between cables is removed by grouping and extra grounding of the cables. The shear wave velocity of the FVP is simply calculated by using the travel distance and the first arrival time. The large calibration chamber tests are carried out to investigate the disturbance effect due to the penetration of FVP blade and the validity of the shear waves measured by the FVP. The blade type FVP is tested in soils up to 30m in depth. The shear wave velocity is measured every 10cm. This study suggests that the upgraded blade type FVP may be an effective device for measuring the shear wave velocity with minimized soil disturbance in the field.

A Study on Optimized Artificial Neural Network Model for the Prediction of Bearing Capacity of Driven Piles (항타말뚝의 지지력 예측을 위한 최적의 인공신경망모델에 관한 연구)

  • Park Hyun-Il;Seok Jeong-Woo;Hwang Dae-Jin;Cho Chun-Whan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.15-26
    • /
    • 2006
  • Although numerous investigations have been performed over the years to predict the behavior and bearing capacity of piles, the mechanisms are not yet entirely understood. The prediction of bearing capacity is a difficult task, because large numbers of factors affect the capacity and also have complex relationship one another. Therefore, it is extremely difficult to search the essential factors among many factors, which are related with ground condition, pile type, driving condition and others, and then appropriately consider complicated relationship among the searched factors. The present paper describes the application of Artificial Neural Network (ANN) in predicting the capacity including its components at the tip and along the shaft from dynamic load test of the driven piles. Firstly, the effect of each factor on the value of bearing capacity is investigated on the basis of sensitivity analysis using ANN modeling. Secondly, the authors use the design methodology composed of ANN and genetic algorithm (GA) to find optimal neural network model to predict the bearing capacity. The authors allow this methodology to find the appropriate combination of input parameters, the number of hidden units and the transfer structure among the input, the hidden and the out layers. The results of this study indicate that the neural network model serves as a reliable and simple predictive tool for the bearing capacity of driven piles.

Development of Temperature Compensated Micro Cone by using Fiber Optic Sensor (광섬유를 이용한 온도 보상형 마이크로콘의 개발)

  • Kim, Raehyun;Lee, Woojin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.163-174
    • /
    • 2009
  • Mechanical device using the load cell or strain gage sensor can be influenced by tempearute changes because temperature change can cause a shift in the load cell or straing gage output at zero loading. In this paper, micro cone penetrometers with 1~7mm in diameter, are developed by using an optical fiber sensor (FBG: Fiber Bragg Grating) to compensate the continous temperature change during cone penetration test. Note the temperature compensated method using optical fiber sensor which has hair-size in diameter, and is not affected by environmental conditions because the measured data is the wavelength shifting of the light instead of the intensity of the electric voltage. Temperature effect test shows that the output voltage of strain gage changes and increases with an increase in the temperature. A developed FBG cone penetrometer, however, achieves excellent temperature compensation during penetration, and produces continuous change of underground temperature. In addition, the temperature compensated FBG cone shows the excellent sensitivity and detects the interface of the layered soils with higher resolution. This study demonstrates that the fiber optic sensor renders the possibility of the ultra small size cone and the new fiber optic cone may produce more reliable temperature compensated tip resistance.

The Effect of Freshwater Inflow on the Spatio-temporal Variation of water Qualify of Yeongil Bay (영일만 수질의 시ㆍ공간 변동에 미치는 담수유입의 효과)

  • 김영숙;김영섭
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • In order to determine the effect of fresh water inflow from the Heongsan river on the changes of water quality in the Yeongil Bay (Korea), the seasonal changes of water temperature, salinity, chemical oxygen demand (COD), dissolved inorganic nitrogen(DIN) and phosphate phosphorus ($PO_4$-P) concentrations were examined using the data set obtained five fixed points of Yeongil Bay from 1998 to 2000. The distributions and changes of COD and concentrations of total inorganic phosphorous (TIP) and nitrogen (TIN) at three points Heongsan river, were also compared with those of Yeongil Bay. Based on the correlations of DIN and $PO_4$-P, it was found that the inflow of freshwater affected on the water quality of Yeongil Bay. Such a complicacy was confirmed by the prominent differences in n few water quality measures between Site 1(the innermost area) and Site 5 (the mouth of the bay). The negative correlations in $\Delta N/\Delta P $ at sites 1, 2 and 3 of the inner-part of the bay also indicated a large effect of freshwater inflow on the water quality of the bay. The extremely low atomic ratio of an average of 6.4 in $\Delta N/\Delta P $ compared to the Redfild ratio suggested that the DIN was depleted in the overall bay system. In contrast, it was inferred that the excessive PO$_4$-P concentration was due to the inflow of freshwater from the Heongsan river.