• Title/Summary/Keyword: Tip-effect

Search Result 1,144, Processing Time 0.034 seconds

Crack initiation mechanism and meso-crack evolution of pre-fabricated cracked sandstone specimens under uniaxial loading

  • Bing Sun;Haowei Yang;Sheng Zeng;Yu Yin;Junwei Fan
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.597-609
    • /
    • 2023
  • The instability and failure of engineered rock masses are influenced by crack initiation and propagation. Uniaxial compression and acoustic emission (AE) experiments were conducted on cracked sandstone. The effect of the crack's dip on the crack initiation was investigated using fracture mechanics. The crack propagation was investigated based on stress-strain curves, AE multi-parameter characteristics, and failure modes. The results show that the crack initiation occurs at the tip of the pre-fabricated crack, and the crack initiation angle increases from 0° to 70° as the dip angle increases from 0° to 90°. The fracture strength kcr is derived varies in a U-shaped pattern as β increased, and the superior crack angle βm is between 36.2 and 36.6 and is influenced by the properties of the rock and the crack surface. Low-strength, large-scale tensile cracks form during the crack initiation in the cracked sandstone, corresponding to the start of the AE energy, the first decrease in the b-value, and a low r-value. When macroscopic surface cracks form in the cracked sandstone, high-strength, large-scale shear cracks form, resulting in a rapid increase in the AE energy, a second decrease in the b-value and an abrupt increase in the r-value. This research has significant theoretical implications for rock failure mechanisms and establishment of damage indicators in underground engineering.

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

Incorporation of amoxicillin-loaded microspheres in mineral trioxide aggregate cement: an in vitro study

  • Fabio Rocha Bohns;Vicente Castelo Branco Leitune;Isadora Martini Garcia;Bruna Genari;Nelio Bairros Dornelles Junior;Silvia Staniscuaski Guterres;Fabricio Aulo Ogliari;Mary Anne Sampaio de Melo;Fabricio Mezzomo Collares
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.50.1-50.11
    • /
    • 2020
  • Objectives: In this study, we investigated the potential of amoxicillin-loaded polymeric microspheres to be delivered to tooth root infection sites via a bioactive reparative cement. Materials and Methods: Amoxicillin-loaded microspheres were synthesized by a spray-dray method and incorporated at 2.5% and 5% into a mineral trioxide aggregate cement clinically used to induce a mineralized barrier at the root tip of young permanent teeth with incomplete root development and necrotic pulp. The formulations were modified in liquid:powder ratios and in composition by the microspheres. The optimized formulations were evaluated in vitro for physical and mechanical eligibility. The morphology of microspheres was observed under scanning electron microscopy. Results: The optimized cement formulation containing microspheres at 5% exhibited a delayed-release response and maintained its fundamental functional properties. When mixed with amoxicillin-loaded microspheres, the setting times of both test materials significantly increased. The diametral tensile strength of cement containing microspheres at 5% was similar to control. However, phytic acid had no effect on this outcome (p > 0.05). When mixed with modified liquid:powder ratio, the setting time was significantly longer than that original liquid:powder ratio (p < 0.05). Conclusions: Lack of optimal concentrations of antibiotics at anatomical sites of the dental tissues is a hallmark of recurrent endodontic infections. Therefore, targeting the controlled release of broad-spectrum antibiotics may improve the therapeutic outcomes of current treatments. Overall, these results indicate that the carry of amoxicillin by microspheres could provide an alternative strategy for the local delivery of antibiotics for the management of tooth infections.

Cut-Through versus Cut-Out: No Easy Way to Predict How Single Lag Screw Design Cephalomedullary Nails Used for Intertrochanteric Hip Fractures Will Fail?

  • Garrett W. Esper;Nina D. Fisher;Utkarsh Anil;Abhishek Ganta;Sanjit R. Konda;Kenneth A. Egol
    • Hip & pelvis
    • /
    • v.35 no.3
    • /
    • pp.175-182
    • /
    • 2023
  • Purpose: This study aims to compare patients in whom fixation failure occurred via cut-out (CO) or cut-through (CT) in order to determine patient factors and radiographic parameters that may be predictive of each mechanism. Materials and Methods: This retrospective cohort study includes 18 patients with intertrochanteric (IT) hip fractures (AO/OTA classification 31A1.3) who underwent treatment using a single lag screw design intramedullary nail in whom fixation failure occurred within one year. All patients were reviewed for demographics and radiographic parameters including tip-to-apex distance (TAD), posteromedial calcar continuity, neck-shaft angle, lateral wall thickness, and others. Patients were grouped into cohorts based on the mechanism of failure, either lag screw CO or CT, and a comparison was performed. Results: No differences in demographics, injury details, fracture classifications, or radiographic parameters were observed between CO/CT cohorts. Of note, a similar rate of post-reduction TAD>25 mm (P=0.936) was observed between groups. A higher rate of DEXA (dual energy X-ray absorptiometry) confirmed osteoporosis (25.0% vs. 60.0%) was observed in the CT group, but without significance. Conclusion: The mechanism of CT failure during intramedullary nail fixation of an IT fracture did not show an association with clinical data including patient demographics, reduction accuracy, or radiographic parameters. As reported in previous biomechanical studies, the main predictive factor for patients in whom early failure might occur via the CT effect mechanism may be related to bone quality; however, conduct of larger studies will be required in order to determine whether there is a difference in bone quality.

The Effect of Repetitive Insertion and Pullout of Spinal Screws on Pullout Resistance : A Biomechanical Study (척추 수술에 사용되는 나사못의 반복 삽입과 인출이 인장항력에 미치는 영향 : 생체 역학적 연구)

  • Bak, Koang Hum;Ferrara, Lisa;Kim, Kwang Jin;Kim, Jae Min;Kim, Choong Hyun;Benzel, Edward C.
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.2
    • /
    • pp.131-136
    • /
    • 2001
  • Object : The clinical uses of screws are increasing with broader applications in spinal disorders. When screws are inserted repeatedly to achieve optimal position, tips of screw pitch may become damaged during insertion even though there are significant differences in the moduli of elasticity between bone and titanium. The effect of repeated screw insertion on pullout resistance was investigated. Methods : Three different titanium screws(cortical lateral mass screw, cancellous lateral mass screw and cervical vertebral body screw) were inserted into the synthetic cancellous material and then extracted axially at a rate of 2.4mm/min using Instron(Model TT-D, Canton, MA). Each set of screws was inserted and pulled out three times. There were six screws in each group. The insertional torque was measured with a torque wrench during insertion. Pullout strength was recorded with a digital oscilloscope. Results : The mean pullout force measurements for the cortical lateral mass screws($185.66N{\pm}42.60$, $167.10N{\pm}27.01$ and $162.52 N{\pm}23.83$ for first, second and third pullout respectively : p=0.03) and the cervical vertebral body screws($386.0N{\pm}24.1$, $360.2N{\pm}17.5$ and $330.9N{\pm}16.7$ : p=0.0024) showed consecutive decrease in pullout resistance after each pullout, whereas the cancellous lateral mass screws did not($194.00N{\pm}36.47$, $219.24N{\pm}26.58$ and 199.49N(36.63 : p=0.24). The SEM after insertion and pullout three times showed a blunting in the tip of the screw pitch and a smearing of the screw surface. Conclusions : Repetitive screw insertion and pullout resulted in the decrease of pullout resistance in certain screws possibly caused by blunting the screw tip. This means screw tips suffer deformations during either repeated insertion or pullout. Thus, the screws that have been inserted should not be used for the final construct.

  • PDF

Scale Effects and Field Applications for Continuous Intrusion Miniature Cone Penetrometer (연속관입형 소형콘관입시험기에 대한 크기효과 및 현장적용)

  • Yoon, Sungsoo;Kim, Kyu-Sun;Lee, Jin Hyung;Shin, Dong-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2359-2368
    • /
    • 2013
  • Cone penetration tests (CPTs) have been increasingly used for site characterizations. However, the site investigations using CPTs are often limited due to soil conditions depending on the cone size and capacity of the CPT system. The small sectional area of a miniature cone improves the applicability of the CPT system due to the increased capacity of the CPT system. A continuous intrusion system using a coiled rod allows fast and cost effective site investigation. In this study, the performance of the continuous intrusion miniature cone penetration test (CIMCPT) system has been evaluated by comparison tests with the standard CPT system at several construction sites in Korea. The results show that the CIMCPT system has a same performance with the CPT system and has advantages on the mobility and applicability. According to field verification tests for scale effect evaluation, the cone tip resistance evaluated by CIMCPT overestimates by 10% comparing to standard CPTs. A crawler mounted with the CIMCPT system has been implemented to improve accessibility to soft ground, and has shown improvement over the truck type CIMCPT system. Therefore, the improved CIMCPT system can be utilized as a cost effective and highly reliable soil investigation methodology to detect the depth of soft ground and to evaluate soil classification.

Study of Temperature Compensation method in Mini-Cones (소형 콘의 온도보상 기법 연구)

  • Yoon, Hyung-Koo;Jung, Soon-Hyuck;Cho, Se-Hyun;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.29-38
    • /
    • 2011
  • The smaller diameter cone penetrometer has been widely used to estimate the characteristics of local area due to high vertical resolution. The half-bridge cirucits have been adopted to measure the mechnical strength of soil through the smaller diameter cone penetrometer due to the limitation of the areas for configuring the full-bridge circuit. The half-bridge circuit, however, is known as being easily affected to the temperature variation. The objective of this study suggests the temperature-compensated method in mini-cones. The diameter and length of the mini-cone is designed to 15mm and 56mm. The load cell of the mini-cone is extended about 54mm on the behind of the mini-cone to reflect the only temperature variation. The full-bridge circuit is installed to measure the temperature-compensated values in the mini-cone and the half-bridge circuit is also organized to compare the temperature compensated values with uncompensated values. The seasonal variation tests are performed to define the effect of temperature variation under summer and winter temperature condition. The densification tests are also carried out to investigate temperature effects during penetration. The measured mechanical resistances with temperature-compensated method show more reliable and reasonable values than those measured by thermal uncompensated system. This study suggests that the temperature-compensated method of the mini-cone may be a useful technique to obtain the more reliable resistances with minimizing the temperature effect.

The Effect of Encoding strategy and Transfer Appropriate Processing on Prospective Memory Performance (부호화 전략 유형과 동시과제 처리 적절성이 미래계획기억 수행에 미치는 효과)

  • Park, Youngshin
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.1
    • /
    • pp.101-127
    • /
    • 2016
  • The present study was conducted to examine the effect of meta-cognitive strategy and transfer appropriate processing(TAP) on prospective memory performance. In two experiments, encoding strategy for PM target words was manipulated by instructions. Participants who were assigned to meta strategic condition were engaged to rate task difficulty(EOL) in addition to predict their own performance(JOL), while participants in cognitive strategy condition were to remember target words by pleasantness ratings and sentence generation. In experiment1 and experiment 2, all participants in both conditions performed not only TAP ongoing task but also TIP ongoing task. Results revealed the benefit of meta cognition and transfer appropriate processing on PM performance. Furthermore, the benefit of TAP was diminished in cognitive strategy condition. There were no-costs on judgement tasks across conditions. The findings suggest that meta-cognition allows to sustain PM targets and intention without regard to cognitive resource.

  • PDF

Development of Hydrodynamic Capacity Evaluation Method for a Vertical-Axis Tidal Stream Turbine (수직축 조류발전 터빈의 유체공학적 용량 산정기법 개발)

  • Lee, D.H;Hyun, B.S.;Lee, J.K.;Kim, M.C.;Rhee, S.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.142-149
    • /
    • 2012
  • This study deals with the investigation of the scale effect for the vertical-axis tidal stream turbine by evaluating the hydrodynamic efficiency of turbine rotors of different diameters at different flow conditions. Numerical analyses are made for the turbine rotors with a same shape, but different sizes obtained using the diameter evaluation equation suggested in this paper. It is shown that the performance of turbine is clearly dependent upon the rotor size and inflow velocity, i.e. Reynolds number dependency of different-scaled turbines showing better efficiency with increasing Reynolds number. The sudden decrease of efficiency is also noticed around the transition region of Reynolds number. The hydrodynamic capacity evaluation method needed at initial stage of turbine design is suggested and exercised with some test cases. It is recommended that the method is expected to be useful for turbines with demanding powers between 10 kW and 300 kW.

CFD Analysis on the Effect of the Nozzle Arrays and Spray Types in the Hydrogen Peroxide Mixing Quencher to Improve the Mixing Efficiency (과산화수소 혼합냉각기 내의 노즐배치 및 가스분사 방식 변화에 따른 혼합율 개선에 대한 전산해석적 연구)

  • Koo, Seongmo;Chang, Hyuksang
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.42-53
    • /
    • 2017
  • Numerical analysis was done to evaluate the fluid distribution inside of the mixing quencher to increase the reaction efficiency of the aqueous hydrogen peroxide solution in the scrubbing column which is used for simultaneous desulfurization and denitrification. Effective injection of the aqueous hydrogen peroxide ($H_2O_2$) solution in the mixing quencher has major effects for improving the reaction efficiency in the scrubbing column by enhancing the mixing of the aqueous $H_2O_2$ solution with the exhaust gas. The current study is to optimize the array of nozzles and the spray angles of the aqueous $H_2O_2$ solution in the mixing quencher by using the computational method. Main concerns of the analysis are how to enhance the uniformity of the $H_2O_2$ concentration distribution in the internal flow. Numerical analysis was done to check the distribution of the internal flow in the mixing quencher in terms of RMS values of the $H_2O_2$ concentration at the end of quencher. The concentration distribution of $H_2O_2$ at the end of is evaluated with respect to the different array of the nozzle pipes and the nozzle tip angles, and we also analyzed the turbulence formation and fluid mixing in the zone. The effect of the spray angle was evaluated with respect to the mixing efficiency in different flow directions. The optimized mixing quencher had the nozzle array at location of 0.3 m from the inlet duct surface and the spray angle is $15^{\circ}$ with the co-current flow. The RMS value of the $H_2O_2$ concentration at the end of the mixing quencher was 12.4%.