• Title/Summary/Keyword: Tip size

Search Result 608, Processing Time 0.038 seconds

Study on Soot Primary Particle Size Measurement in Ethylene Diffusion Flame by Time-Resolved Laser-Induced Incandescence (시분해 레이저 유도 백열법을 이용한 에틸렌 확산 화염에서의 매연 일차입자크기 측정에 관한 연구)

  • Kim Gyu-Bo;Cho Seung-Wan;Lee Jong-Ho;Jeong Dong-Soo;Chang Young-June;Jeon Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.973-981
    • /
    • 2006
  • Recently there is an increasing interest in particulate matter emission because of new emission regulations, health awareness and environmental problems. It requires to improve particulate measurement techniques as well as to reduce soot emissions from combustion systems. As mentioned above, it is demanded that reduction techniques together with measurement techniques of exhausted particulate matters in combustion systems such as vehicles. However, measurement techniques of particulate matters should be prior to reduction techniques of that because it is able to know an increase and a decrease of exhausted particulate matters when measured particulate matters. Therefore, in this study, we report the measurement of soot primary-particle size using time-resolved laser induced incandescence (TIRE-LII) technique in laminar ethylene diffusion flame. As an optical method, laser induced incandescence is one of well known methods to get information for spatial and temporal soot volume fraction and soot primary particle size. Furthermore, TIRE-LII is able to measure soot primary particle size that is decided to solve the decay ate of signal S $(t_1)$ and S $(t_2)$ at two detection time. In laminar ethylene diffusion flame, visual flame height is 40 mm from burner tip and measurement points are height of 15, 20, 27.5, 30 mm above burner tip along radial direction. As increasing the height of the flame from burne. tip, primary particle size was increased to HAB(Height Above Burner tip)=20mm, and then decreased from HAB=27.5 mm to 30 mm. This results show the growth and oxidation processes for soot particles formed by combustion.

Molecular Dynamics Simulation of Adhesion Processes

  • Cho, Sung-San;Park, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1440-1447
    • /
    • 2002
  • Adhesion of a hemispherical tip to the flat surface in nano-structures is simulated using the molecular dynamics technique. The tip and plates are modeled with the Lennard-Jones molecules. The simulation focuses on the deformation of the tip. Detailed descriptions on the evolution of interaction force, the energy dissipation due to adhesion hysteresis, the forma- tion-growth-breakage of adhesive junction as well as the evolution of molecular distribution during the process are presented. The effects of the tip size, the maximum tip approach, the tip temperature, and the affinity between the tip and the mating plate are also discussed.

Study on the Effect of Pile Tip Shape on Driven Pile Behavior Using 3D Printers (3D 프린터를 이용한 선단 모양 변화에 따른 타입말뚝 거동 연구)

  • Kim, Dohyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.27-38
    • /
    • 2023
  • In this study, the impact of pile tip geometry, including shape, size, and angle, on the drivability and stress concentration during pile driving was investigated using 3D printing technology and finite element numerical analysis. A series of field loading tests were conducted on a test pile with various pile tip conditions, including width, angle, and shape. The changes in settlement were quantified as a ratio to the settlement of a conventional pile tip case and large deformation finite element analysis was used to investigate the maximum stress on a pile tip and the location of possible damage during pile driving. The results showed that by modifying the shape, size, and angle of the pile tip, the drivability of the pile could be improved and the maximum stress concentration around the pile tip could be significantly reduced, thereby ensuring the structural integrity of the pile during pile driving.

Numerical Study on Reduction in Frictional Loss for a Sandwitch Type of Pressure Regulator (정압기의 유체력 손실 저감에 대한 수치해석적 연구)

  • Seo, Dong-Kyun;Lee, Jung-Hoon;Hwang, Jung-Ho;Kim, Kwang-Soo;Kim, Kang-Dae;Kim, Dong-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.47-52
    • /
    • 2010
  • The development of energy saving system with pressure regulator has recently been received interests. Since the internal geometry in the pressure regulator is small and complex, the frictional loss in it is critical. In this study, the pressure loss with tip size, tip position, and mass flow was investigated using numerical approaches(CFD). The aimed reduction in pressure were achieved as the ratio of t/T was more than 0.8. In addition, there was no effect of the tip position.

Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials (횡방향으로 등방성인 재료에서 균열선단 크리프 변형 거동)

  • Ma, Young-Wha;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1455-1463
    • /
    • 2009
  • Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-$2^{nd}$ creep, which elastic modulus ( E ), Poisson's ratio ( ${\nu}$ ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials.

Performance Evaluation of the Tip-tilt Actuator in Fast Steering Secondary Mirror for Large Telescope (대형 망원경용 FSM(Fast Steering Secondary Mirror)을 위한 팁틸트 액츄에이터의 성능평가)

  • Kim, Ho Sang;Lee, Dong-Chan;Lee, Kyoung-Don;Kim, Young-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.403-409
    • /
    • 2014
  • For ground-based telescope application, the performance assessment of tip-tilt actuator is important because the optical quality of telescope depends upon the windshake compensation ability of the fast steering secondary mirror. But it is difficult to measure the performance characteristics of the actuators due to the large size mirror and test facilities including the vacuum support and structural frame. In this paper, the full-scale tip-tilt test bed for the large size secondary mirror with diameter of 1m is built and the several tests are performed including the range, resolution and frequency response function. From the measurement results, it is shown that the tip-tilt actuator can successfully compensate the windshake with frequency of maximum 12 Hz and be a candidate for the Giant Magellan Telescope.

Factors Affecting Restaurant Consumers' Tipping Behavior

  • Cho, Sun Bai
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.1
    • /
    • pp.15-32
    • /
    • 2014
  • This study examines the relationship between tip amount and its possible antecedents: bill size, the Big Five personality types, meal type, food quality, atmosphere, service quality, consumer gender, server gender, customer hospitality experience, race, and alcohol consumption. A survey of southeastern undergraduate students was conducted to collect information about the customer, server and customer tipping habits. While the analysis suggests that service is an important factor, it shows that other factors affect tip amount. Furthermore, these factors affect tip amounts in many different ways. Some examples of these factors include bill size, alcohol consumption, gender dynamics, meal type, food quality, and personality type. The conclusion suggests the intuition behind these factors by providing a dissection of their meaning and their importance to servers, customers, and managers alike. Purpose: This study tests restaurant customer tipping habits and some personality traits that have received limited previous attention as predictors of tipping. Methods: This study is that the tip amount was self-reported, business students at a university in a large southeastern city of USA were asked to complete a tipping journal. Results: This study was able to replicate the service-tipping relationship. Moreover, this study reiterated that server friendliness is a very powerful tool to increasing tips. Conclusion: This study strongly indicate that service has a positive relationship with tip amount, and also produce a positive relationship with emotional stability and a negative relationship to conscientiousness.

Experimental Evaluation of Handwriting Performance for the Ergonomic Design of Writing Instruments (필기기구의 인간공학적 설계를 위한 필기성능평가)

  • 권규식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.21 no.45
    • /
    • pp.357-364
    • /
    • 1998
  • This study deals with the performance evaluation of writing for designing handwriting instruments ergonomically. Experimental tests were executed on ballpoint pen., felt-tip pen, pencil, sharp-pencil, and fountain pen for ease of use and reduction of the muscles fatigue. The writing time and the degree of comfort of writing by subjects were measured on the diameters of five writing instruments. The results indicated that the ballpoint pen was rated significantly superior to the others in writing speed attribute and the instrument with the least fatigue was the fountain pen. There was a significant interaction effect between the types of instruments and their size in diameters. The diameter of instruments for considering time and comfort together was verified that the size of 9.5mm was efficient for ballpoint pen, the size of 8.1mm for felt-tip pen, the size of 7.5mm for pencil, the size of 8.2mm for sharp-pencil, and the size of 9.1mm for fountain pen.

  • PDF

A Study of Spot Welding Process to Reduce Spatter with the Hollow Tip (팁 선단에 중공이 있는 전극을 이용한 스패터 저감 스폿 용접에 관한 연구)

  • Jun, Jung-Sang;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.27 no.4
    • /
    • pp.44-48
    • /
    • 2009
  • In automotive company, a lot of researchers have investigated for the spatterless welding process during last two decades. A spatter influences on the product quality such as strength and surface states. In this paper, a hollow tip is proposed for spatterless process. An optimal size of electrode hole is obtained from a weldability evaluation of each hole diameter. Through the cross section analysis, a phenomenon that molten metal moves in the hole which located between two workpiece is observed, and this makes spatterless welding process even though current is higher. Finally, widely acceptable weld area in lobe curve is obtained by using hollow tip as compare with conventional no hollow tip. In this paper, spatterless resistance spot welding with improvement weldability and productivity is proposed by using hollow tip.

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF