• 제목/요약/키워드: Tip blade

검색결과 501건 처리시간 0.024초

750㎾급 수평축 풍력발전용 복합재 회전날개의 구조 시험을 통한 설계개선에 관한 연구 (Improvement of Design by Structural Test for 750㎾ HAWT Composite Blade)

  • 공창덕;정종철
    • 한국추진공학회지
    • /
    • 제4권1호
    • /
    • pp.22-29
    • /
    • 2000
  • 본 연구에서는 750㎾급 수평축 풍력발전용 복합재 회전날개를 설계, 제작하여 구조시험을 수행하였다. 시험시 발생된 후연부위의 국부좌굴과 날개 끝 부위에서 과도하게 증가하는 처짐문제를 해결하기 위하여 개선설계를 수행하였다. 설계개선 내용으로는 스파의 두께를 점차적으로 변화시켜 과도한 처짐을 감소시켰으며, 웨브의 길이를 연장하여 국부좌굴현상을 방지하도록 하였다 개선설계결과는 유한요소해석을 수행하였으며 회전날개 구조의 안전성 및 안정성이 확인되었다.

  • PDF

강우에 의한 풍력 발전기 블레이드 전연부 침식 시험에 관한 연구 (A Study on the Erosion of Wind Turbine Blade Leading Edge by Rain)

  • 김태원;문기웅;손진혁;김보중;유시홍;윤창번
    • 풍력에너지저널
    • /
    • 제14권3호
    • /
    • pp.43-53
    • /
    • 2023
  • To improve AEP, wind turbine blade lengths are increasing every year. As the length of blades increases, the blade tip speed also increases. Because of the increased tip speed, the impact energy between the leading edge and raindrops also increases. The increased impact energy is the primary factor contributing to erosion of the blade's leading edge. Blade leading edge erosion reduces aerodynamic performance, increases repair costs, and causes downtime. Therefore, numerous studies are being conducted on protective solutions and RET systems to prevent and delay erosion of the blade's leading edge. However, few institutions in Korea research protective solutions and RET systems. In this study, we aim to develop a laboratory-scale RET system. The developed RET system was based on the ASTM G73-10 standard. As a result of the RET, it was confirmed that the erosion tendency was similar to that of overseas institutions. In addition, the effectiveness of the RET system was verified by a maximum erosion rate of 0.0023 for an epoxy-based protective solution.

선형 압축기 익렬에서 발생하는 익단 누설 와류내의 레이놀즈 응력 분포 (I) -입구 유동각 변화의 영향- (Distribution of the Reynolds Stress Tensor Inside Tip Leakage Vortex of a Linear Compressor Cascade (I) - Effect of Inlet Flow Angle -)

  • 이공희;박종일;백제현
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.902-909
    • /
    • 2004
  • A steady-state Reynolds averaged Navier-Stokes simulation was conducted to investigate the distribution of the Reynolds stress tensor inside tip leakage vortex of a linear compressor cascade. Two different inlet flow angles ${\beta}=29.3^{\circ}$(design condition) and $36.5^{\circ}$(off-design condition) at a constant tip clearance size of $1\%$ blade span were considered. Classical methods of solid mechanics, applied to view the Reynolds stress tensor in the principal direction system, clearly showed that the high anisotropic feature of turbulent flow field was dominant at the outer part of tip leakage vortex near the suction side of the blade and endwall flow separation region, whereas a nearly isotropic turbulence was found at the center of tip leakage vortex. There was no significant difference in the anisotropy of the Reynolds normal stresses inside tip leakage vortex between the design and off-design condition.

2개의 블레이드로 구성된 회전익 끝와류들의 간섭 특성 (Experimental Study on the Evolution of Tip Vortex Structures Generated by a Two-Bladed Rotor)

  • 손용준;박병호;한용운
    • 대한기계학회논문집B
    • /
    • 제35권7호
    • /
    • pp.709-715
    • /
    • 2011
  • 대칭익형 단면에 미세한 피치각의 차이를 가지는 두 개의 로터 블레이드의 끝에서 발생하는 와류들의 상호 간섭을 관측하기 위하여 2차원 LDV를 활용하여 끝와류의 회전속도 성분과 축방향속도 성분들을 후류시기에 따라서 측정하였다. 선행 블레이드는 끝와류 축방향 성분이 정규분포를 나타내는 상사성을 위배한 반면, 후행 블레이드는 회전속도 성분이 복합와류를 나타내는 Vatistas' n=2 모형의 상사성을 위배하는 것으로 관찰되었다. 또한, 후류시기 200~240도 근방에서 두 끝와류의 궤적이 근접되어 상호 간섭을 나타내는 것으로 밝혀졌으며 이 시기 동안 후행블레이드의 와류이완 현상이 발생하는 것으로 확인이 되었다. 이러한 후류 간섭은 관절형 허브를 가지는 로터에서도 발생될 것으로 예측된다.

Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion

  • Cui, Ying;Hyun, Beom-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권5호
    • /
    • pp.456-465
    • /
    • 2016
  • In order to optimize the performance of a Wells turbine with fixed guide vanes, the designs of an end plate and a ring on the tip of the turbine rotor are proposed as penetrating blade tip treatments. In this study, numerical investigations are made using computational fluid dynamics (CFD)-based ANSYS Fluent software, and validated by corresponding experimental data. The flow fields are analyzed and non-dimensional coefficients $C_A$, $C_T$ and ${\eta}$ are calculated under steady-state conditions. Numerical results show that the stalling phenomenon on a ring-type Wells turbine occurs at a flow coefficient of ${\phi}=0.36$, and its peak efficiency can reach 0.54, which is 16% higher than that of an unmodified turbine and 9% higher than in the case of an endplate-type turbine. In addition, quasi-steady analysis is used to calculate the mean efficiency and output work of a wave cycle under sinusoidal flow conditions. As a result, it has been found that the ring-type turbine is superior to other types of Wells turbines.

UH-60A 로터 블레이드의 정지비행 성능해석 (PERFORMANCE ANALYSIS OF HOVERING UH-60A ROTOR BLADE)

  • 박영민;최인호;장병희
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.45-49
    • /
    • 2008
  • The present paper describes the results of performance analysis for UH-60A rotor blade in hover. For the numerical simulations, commercial CFD software, FLUENT was used with Spalart-Allmaras turbulence model. The flow solver was based on node based scheme and second order spatial accuracy options was used for simulations. For the enhancement of wake capturing capability, high resolution grid was used around tip vortex region. Granting that somewhat over-prediction of thrust was observed near blade tip region, performance was well correlated with experimental data within 3% accuracy in the operating region. Finally it was shown that the present flow solver can be used as a preliminary performance analysis tool for hovering helicopter rotor blades.

UH-60A 로터 블레이드의 정지비행 성능해석 (PERFORMANCE ANALYSIS OF HOVERING UH-60A ROTOR BLADE)

  • 박영민;장병희;정진덕
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.73-76
    • /
    • 2007
  • The present paper describes the results of performance analysis for UH-60A rotor blade in hover. For the numerical simulations, commercial CFD software, FLUENT was used with Spalart-Allmaras turbulence model. The flow solver was based on node based scheme and second order spatial accuracy options was used for simulations. For the enhancement of wake capturing capability, high resolution grid was used around tip vortex region. Granting that somewhat over prediction of thrust was observed near blade tip region, performance was well correlated with experimental data within 3% accuracy in the operating region. Finally it was shown that the present flow solver can be used for preliminary performance analysis tool for hovering helicopter rotor blades.

  • PDF

조류발전용 팁 레이크 HAT 임펠러 성능 수치해석 연구 (A Numerical Study on Tip Rake HAT Impeller Performance for Tidal Stream Power)

  • 신병철;김문찬;도인록;이신형;현범수;송무석
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제13권4호
    • /
    • pp.263-269
    • /
    • 2010
  • 조류발전용 HAT 임펠러에 팁 레이크를 적용하여 임펠러 성능을 고찰해 보았다. 기존의 조류발전용 임펠러는 날개 끝 보오텍스에 의해 효율 감소로 인한 전력 손실 뿐 아니라 소음 및 진동에 의한 설치해역 주변의 해양 생태계 파괴의 우려가 있다. 임펠러 날개 끝에 레이크를 적용함으로써 효율의 개선과 함께 소음 및 진동 저감 효과를 파악하고자 하였다. 향후 레이크 비율에 따른 효율증가 및 캐비테이션 성능 향상에 대한 최적화를 수행할 계획이다.

축류회전차 익말단 틈새유동에 대한 수치해석

  • 노수혁;조강래
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.336-345
    • /
    • 1998
  • The substantial loss behind axial flow rotor was generated by wake, various vortices in the hub region and the leakage vortex in the tip region. Particularly, the leakage vortex formed near blade tip was one of the main causes of the reduction of performance, the generation of noise and the aerodynamic vibration in rotor downstream. In this study, the three-dimensional flowfields in an axial flow rotor for various tip clearances were calculated, and the numerical results were compared with the experimental ones. The numerical technique was based on SIMPLE algorithm using standard k-.epsilon. model (WFM). Through calculations, the effects of the tip clearance on the overall performance of rotor and the loss distributions, and the increase in the displacement, momentum, and blade-force-deficit thickness of the casing wall boundary layer were investigated. The mass-averaged flow variables behind rotor agreed well with the experimental results. The presence of the tip leakage vortex behind rotor was described well. Although the loci of leakage vortex by calculation showed some differences compared with the experimental results, its behavior for various tip clearances was clarified by examining the loci of vortex center.

소결체와 저탄소강의 레이저용접시 생성되는 캐비티의 형성과 용접 특성에 대한 연구 (A Study on the Formation of Cavity and Welding Property in the Laser Welding Fusion Zone between Sintered Segment and Mild Steel Shank)

  • 조남준;정우광;김성욱;이창희;김승대
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.300-306
    • /
    • 2004
  • A laser welding has been made between sintered tip of Fe-Co-W and low carbon steel shank for the diamond saw blade. The welding characteristics and formation of defect has been investigated carefully for the weld fusion zone in different welding condition. Full penetration has been observed for the whole range of heat input investigated in the present work. Bead width and under-fill have been increased with the increase of heat input. With increasing of heat input small cavities were decreased while large cavities were increased. The ratio of total cavity area to the entire weld bead area was not changed significantly with change of heat input. Most of cavities were found near the tip, and supposed to be formed from the pore in the tip.