• Title/Summary/Keyword: Tip area

Search Result 489, Processing Time 0.029 seconds

Tip Gap Flow and Aerodynamic Loss Generation over a Cavity Squealer Tip with the Variation of Pressure-Side Opening Length in a Turbine Cascade (스퀼러팁의 압력면 개방길이 변화에 따른 터빈 익렬 팁간극 유동 특성 및 압력손실)

  • Cheon, Joo Hong;Lee, Sang Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2012
  • The effect of pressure-side opening length on three-dimensional flow fields and aerodynamic losses downstream of a cavity squealer tip has been investigated in a turbine rotor cascade for the squealer rim height-to-chord ratio and tip gap height-tochord ratio of $h_{st}/c$ = 5.05% and h/c = 2.0% respectively. The opening length-to-camber ratio is changed to be $OL/c_c$ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.7 The results show that longer OL leads not only to weaker secondary flow but also to lower aerodynamic loss in the tip leakage vortex region, while it significantly widens the area with high aerodynamic loss in the passage vortex region. The aerodynamic loss coefficient mass-averaged all over the measurement plane is kept almost constant for $0.0{\leq}OL/c_c{\leq}0.3$, whereas it increases rapidly for $OL/c_c$ > 0.3 in proportion to $OL/c_c$. There is little deterioration in flow turning with increasing $OL/c_c$.

Nanoscale Fabrication in Aqueous Solution using Tribo-Nanolithography (Tribo-Nanolithography 를 이용한 액중 나노가공기술 개발)

  • 박정우;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1315-1318
    • /
    • 2004
  • Nano-scale fabrication of silicon substrate in an aqueous solution based on the use of atomic force microscopy was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate easily by a simple scratching process (Tribo-Nanolithography, TNL), has been applied instead of conventional silicon cantilever for scanning. A slant nanostructure can be fabricated by a process in which a thin damaged layer rapidly forms in the substrate at the diamond tip-sample junction along scanning path of the tip and simultaneously the area uncovered with the damaged layer is being etched. This study demonstrates how the TNL parameters can affect the formation of damaged layer and the shape of 3-D structure, hence introducing a new process of proximal nanolithography in aqueous solution.

  • PDF

Nanoscale Fabrication in Aqueous Solution using Tribo-Nanolithography (Tribo-Nanolithography를 이용한 액중 나노가공기술 개발)

  • Park Jeong Woo;Lee Deug Woo;Kawasegi Noritaka;Morita Noboru
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.194-201
    • /
    • 2005
  • Nanoscale fabrication of silicon substrate in an aqueous solution based on the use of atomic force microscopy was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate easily by a simple scratching process (Tribo-Nanolithography, TNL), has been applied instead of conventional silicon cantilever for scanning. A slant nanostructure can be fabricated by a process in which a thin damaged layer rapidly forms in the substrate at the diamond tip-sample junction along scanning path of the tip and simultaneously the area uncovered with the damaged layer is being etched. This study demonstrates how the TNL parameters can affect the formation of damaged layer and the shape of 3-D structure, hence introducing a new process of AFM-based nanolithography in aqueous solution.

Dispersion Characteristics of Sprays under the Condition of Solid Body Rotating Swirl (강체 선회유동 조건에서의 분무 분산 특성에 관한 연구)

  • 이충훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.16-23
    • /
    • 2001
  • Spray dispersion in high pressure diesel engines have been simulated experimentally with a special emphasis on the effect of swirl by using a liquid injection technique. A constant volume chamber was designed to be rotatable in order to generate a continuous swirl and to have the flow field closely resembling a solid body rotation. Emulsified fuel was injected into the chamber and the developing process of fuel sprays was visualized. The effect of swirl on the spray dispersion was quantified by calculating non-dimensionalized dispersion area according to the spray tip penetration length. The results show that the effect of swirl on the spray dispersion is different between short and long spray penetrations. For short range of spray tip penetration, the effect of swirl on spray dispersion is quite small. However, as the spray tip is penetrated into longer distance in spray chamber, the effect of swirl on spray dispersion becomes larger. These results can be used as a basic data for designing combustion chamber and injection system of direct injection diesel engine.

  • PDF

Nanoscale Fabrication in Aqueous Solution using Tribo-Nanolithography

  • Park, Jeong-Woo;Lee, Deug-Woo;Kawasegi, Noritaka;Morita, Noboru
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.8-13
    • /
    • 2006
  • Nanoscale fabrication of silicon substrate in an aqueous solution based on the use of atomic force microscopy was demonstrated. A specially designed cantilever with a diamond tip, allowing the formation of a mask layer on the silicon substrate by a simple scratching process (Tribo-Nanolithography, TNL), has been applied instead of the conventional silicon cantilever for scanning. A slant nanostructure can be fabricated by a process in which a thin mask layer rapidly forms on the substrate at the diamond tip-sample junction along scanning path of the tip, and simultaneously, the area uncovered with the mask layer is etched. This study demonstrates how the TNL parameters can affect the formation of the mask layer and the shape of 3-D structure, hence introducing a new process of AFM-based nanolithography in aqueous solution.

Evaluation of Fatigue Strain Intensity Factor on Fatigue Crack Propagation Rate (da/dN) (금속 재료의 피로 균열 전파 속도(da/dN) 평가를 위한 변형율 확대 계수의 유효성 검토)

  • 유재환;최재강;손종동
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.3-8
    • /
    • 1996
  • Fatigue fracture is the cyclic fracture phenomena at a very small local area near a crack tip. Therefore, the detailed quantitative experimental analysis about local cyclic strain distribution near a crack tip is prerequisite In order to make an effective parameter able to account for fatigue fracture problems. However, there are few reports on detailed quantitative experimental analysis of a local cyclic strain distribution near a crack tip, because of experimental difficulties. In this study, the distribution of local fatigue strains near a fatigue crack tip was in detail studied using by fine dot grid strain measurement method. From these results, a single parameter, which characterizes local fatigue strain field, was proposed. In addition, this parameter was applied to evaluate the fatigue crack propagation rate.

  • PDF

Spray Characteristics of a Movable Pintle Injector with Pintle Tip Shape (가변 핀틀 인젝터에서 핀틀 팁 형상에 따른 분무특성 연구)

  • Nam, Jeongsoo;Lee, Keonwoong;Park, Sunjung;Huh, Hwanil;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.658-664
    • /
    • 2019
  • In the development of the liquid rocket engine using the pintle injector, spray characteristics such as spray angle, droplet size, and distribution of the droplets are dominant parameters. Three different kind of multi hole type pintle tip and a continuous type pintle tip were designed. In the case of multi hole pintle tip, SMD result did not have a significant difference depending on the number of holes. In analysis with visualization images, however, the droplets were uniformly distributed as the number of holes increased. Liquid droplets from continuous type pintle tip were finely atomized and dispersed uniformly than those from multi-hole type pintle tip. In addition, the thrust control by adjusting the liquid injection area of the pintle is suitable for the continuous type, which is easier to face-shutoff rather than the multi hole type. The spray angle of each pintle tip according to TMR was measured to derive a specific tendency and corresponding empirical formula.

An analysis on the factors responsible for relative position of interproximal papilla in healthy subjects

  • Kim, Joo-Hee;Cho, Yun-Jung;Lee, Ju-Youn;Kim, Sung-Jo;Choi, Jeom-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.160-167
    • /
    • 2013
  • Purpose: This study examined the factors that can be associated with the appearance of the interproximal papilla. Methods: One hundred and forty-seven healthy interproximal papillae between the maxillary central incisors were examined. For each subject, a digital photograph and periapical radiograph of the interdental embrasure were taken using a 1-mm grid metal piece. The following parameters were recorded: the amount of recession of the interproximal papilla, contact point-bone crest distance, contact point-cemento-enamel junction (CEJ) distance, CEJ-bone crest distance, inter-radicular distance, tooth shape, embrasure space size, interproximal contact area, gingival biotype, papilla height, and papilla tip form. Results: The amount of recession of the interproximal papilla was associated with the following: 1) increase in contact point-bone crest, contact point-CEJ, and CEJ-bone crest distance; 2) increase in the inter-radicular distance; 3) triangular tooth shape; 4) decrease in the interproximal contact area length; 5) increase in the embrasure space size; and 6) flat papilla tip form. On the other hand, the amount of gingival recession was not associated with the gingival biotype or papilla height. In the triangular tooth shape, the contact point-bone crest distance and inter-radicular distance were longer, the interproximal contact area length was shorter, and the embrasure space size was larger. The papilla tip form became flatter with increasing inter-radicular distance and CEJ-bone crest distance. Conclusions: The relative position of the interproximal papilla in healthy subjects was associated with the multiple factors and each factor was related to the others. A triangular tooth shape carries a higher risk of recession of the interproximal papilla because the proximal contact point is positioned more incisally and the bone crest is positioned more apically. This results in an increase in recession of the interproximal papilla and flat papilla tip form.

Study on the Performance of a Centrifugal Compressor Using Fluid-Structure Interaction Method (유체-구조 연성해석을 이용한 원심압축기 운전익단간극과 성능 예측)

  • Lee, Horim;Kim, Changhee;Yang, Jangsik;Son, Changmin;Hwang, Yoonjei;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.357-363
    • /
    • 2016
  • In this study, we perform a series of aero-thermo-mechanical analyses to predict the running-tip clearance and the effects of impeller deformation on the performance using a centrifugal compressor. During operation, the impeller deformation due to a combination of the centrifugal force, aerodynamic pressure and the thermal load results in a non-uniform tip clearance profile. For the prediction, we employ the one-way fluid-structure interaction (FSI) method using CFX 14.5 and ANSYS. The predicted running tip clearance shows a non-uniform profile over the entire flow passage. In particular, a significant reduction of the tip clearance height occurred at the leading and trailing edges of the impeller. Because of the reduction of the tip clearance, the tip leakage flow decreased by 19.4%. In addition, the polytrophic efficiency under operating conditions increased by 0.72%. These findings confirm that the prediction of the running tip clearance and its impact on compressor performance is an important area that requires further investigation.

Predictions of non-uniform tip clearance effects on the flow field in an axial compressor

  • Kang, Young-Seok;Kang, Shin-Hyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.743-750
    • /
    • 2008
  • Asymmetric tip clearance in an axial compressor induces pressure and velocity redistributions along the circumferential direction in an axial compressor. This paper presents the mechanism of the flow redistribution due to the asymmetric tip clearance with a simple numerical modeling. The flow field of a rotor of an axial compressor is predicted when an asymmetric tip clearance occurs along the circumferential direction. The modeling results are supported by CFD results not only to validate the present modeling but also to investigate more detailed flow fields. Asymmetric tip clearance makes local flow area and resultant axial velocity vary along the circumferential direction. This flow redistribution 'seed' results in a different flow patterns according to the flow coefficient. Flow field redistribution patterns are largely dependent on the local tip clearance performance at low flow coefficients. However, the contribution of the main flow region becomes dominant while the tip clearance effect becomes weak as the flow coefficient increases. The flow field redistribution pattern becomes noticeably strong if a blockage effect is involved when the flow coefficient increases. The relative flow angle at the small clearance region decreases which result in a negative incidence angle at the high flow coefficient. It causes a recirculation region at the blade pressure surface which results in the flow blockage. It promotes the strength of the flow field redistribution at the rotor outlet. These flow pattern changes have an effect on the blade loading perturbations. The integration of blade loading perturbation from control volume analysis of the circumferential momentum leads to well-known Alford's force. Alford's force is always negative when the flow blockage effects are excluded. However when the flow blockage effect is incorporated into the modeling, main flow effects on the flow redistribution is also reflected on the Alford's force at the high flow coefficient. Alford's force steeply increases as the flow coefficient increases, because of the tip leakage suppression and strong flow redistribution. The predicted results are well agreed to CFD results by Kang and Kang(2006).

  • PDF