• Title/Summary/Keyword: Tip angle

Search Result 601, Processing Time 0.022 seconds

A Study on Spray Behavior of DME-LPG Blended Fuels in a Common-rail Injection System (커먼레일 분사 시스템에서 DME-LPG 혼합연료의 분무거동에 관한 연구)

  • Kim, W.I.;Woo, S.C.;Lee, C.S.;Lee, K.H.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • This study is to investigate the spray behavior of DME-LPG blended fuels in common rail injection system for diesel engines. The visualization experiment was performed to analyze the macroscopic spray behavior of test fuels. In addition, the experiment using BOS(Background Oriented Schlieren) method is performed to compare liquid phase and gas phase. The test fuels are injected in high pressure chamber. The ambient pressure of high pressure chamber was formed by nitrogen gas. Spray tip penetration, spray cone angle and spray area were measured using high speed camera. SMD(Sauter Mean Diameter) and spray particle velocity were measured using the PDPA(Phase Doppler Particle Analyzer) system to analyze the microscopic properties of test fuels. The results of this experiment showed that spray tip penetration, spray cone angle and spray area of DME-LPG fuels are similar to those of DME fuel. When compared to results of experiment using BOS, significant differences of spray tip penetrations, spray cone angle and spray area are showed because of gas phase. The results of experiment using BOS method showed higher values. SMD of DME-LPG blended fuels is smaller than that of DME fuel. Velocity of DME-LPG blended fuels is faster than that of DME fuel.

Experimental Study on Mixing Stability and Macroscopic Spray Characteristics of Diesel-gasoline Blended Fuels (디젤-가솔린 혼합연료의 혼합안정성 및 거시적인 분무 특성에 관한 실험적 연구)

  • Park, Sewon;Park, Su Han;Park, Sungwook;Chon, Mun Soo;Lee, Chang Sik
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.121-127
    • /
    • 2012
  • The study is to investigate the mixing stability, fuel properties, and macroscopic spray characteristics of diesel-gasoline blended fuels in a common-rail injection system of a diesel engine. The test fuels were mixed diesel with gasoline fuel, which were based volume fraction of gasoline from 0 to 100% in 20% intervals. In order to analyze the blended effect of gasoline to diesel fuel, the properties of test fuels such as density, viscosity, and surface tension were measured. In addition, the spray behavior characteristics were studied by investigating the spray tip penetration and spray angle using a spray images through a spray visualization system. It was revealed that the density, kinematic viscosity and surface tension of diesel-gasoline blending fuels were decreased with the increase of gasoline fuel. The injection quantity of test fuels were almost similar level at short energizing duration condition. On the other hand, the increase of energizing duration shows the decrease of injection quantity compared to short energizing duration. The test blending fuels have similar growth in Spray tip penetration and Spray cone angle.

Study on Macroscopic Spray and Spray Pattern Characteristics of Gasoline Direct Injection Injector for the Variation of Injection Pressure (분사압력 변화에 따른 가솔린 직접분사 인젝터의 거시적 분무와 분무패턴 특성에 관한 연구)

  • Park, Jeonghyun;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.23 no.1
    • /
    • pp.22-29
    • /
    • 2018
  • The purpose of this study is to investigate the macroscopic spray characteristics and spray pattern of a gasoline direct injection (GDI) injector according to the increase of injection pressure. The macroscopic spray characteristics, such as a spray tip penetration and spray angle, were measured and analyzed from the frozen spray images, which are obtained from the spray visualization system including the high-speed camera, light-source, long-distance microscope (LDM). The spray pattern was analyzed through the deviation of the center of the spray plum and images were acquired using Nd: YAG Laser and ICCD(Intensified charge coupled device) camera. From the experiment and analysis, it revealed that the injection pressure have a significant influence on the spray tip penetration and spray pattern. However, the injection pressure have little influence on the spray angle. The increase of injection pressure induced the reduction of a closing delay. In addition, the deviation of spray center increase with the increase of injection pressure and the distance from a nozzle tip.

SPRAY CHARACTERISTICS OF DME IN CONDITIONS OF COMMON RAIL INJECTION SYSTEM(II)

  • Hwang, J.S.;Ha, J.S.;No, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.119-124
    • /
    • 2003
  • Dimethyl Ether (DME) is an excellent alternative fuel that provides lower particulate matter (PM) than diesel fuel under the same engine operating conditions. Spray characteristical of DME in common rail injection system were investigated within a constant volume chamber by using the particle motion analysis system. The injector used in this study has a single hole with the different orifice diameter of 0.2, 0.3 and 0.4 mm. The injection pressure was fixed at 35MPa and the ambient pressure was varied from 0.6 to 1.5 MPa. Spray characteristics such as spray angle, spray tip penetration and SMD (Sauter mean diameter) were measured. Spray angle was measured at 30d$_{0}$, downstream of the nozzle tip. The measured spray angie increased with increase in the ambient pressure. Increase of the ambient pressure results in a decrease of spray penetration. The experimental result, of spray penetration were compared with the predicted one by theoretical and empirical models. Increase in the ambient pressure and nozzle diameter results in an increase of SMD at a distance 30, 45 and 60d$_{0}$, downstream of the nozzle, respectively.ely.

Experimental Study on the Performance of a Turbopump Inducer

  • Hong, Soon-Sam;Kim, Jin-Sun;Park, Chang-Ho;Kim, Jinhan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.240-244
    • /
    • 2004
  • Characteristics of steady and unsteady cavitation in a turbopump inducer were investigated in this paper. To see the effect of tip clearance on the inducer performance, three cases of tip clearance were tested. The helical inducer, which has two blades with inlet tip blade angle of 7.8 degree and tip solidity of 2.7, was tested in the water. In the non-cavitating condition, the inducer head decreased with increase in the tip clearance. Rotating cavitation and cavitation surge were observed through unsteady pressure measurements at the inducer inlet. The cell number and propagation speed of the rotating cavitation were determined through cross-correlation analysis. During the rotating cavitation one cell rotated at the same rotational speed as that of the inducer rotation and the cavitation surge did not rotate. The critical cavitation number increased with increase in the tip clearance at the same flow rate, but the change of critical cavitation number was small at the nominal flow rate.

  • PDF

Internal Flow Analyses of Diagonal Type Blowers Using a Quasi-3-Dimensional Method Considering Spanwise Mixing and Tip Clearance Effect Due to Secondary Flows (이차흐름에 의한 스팬방향의 믹싱효과와 선단틈새흐름을 고려한 준 삼차원 사류송풍기 내부흐름 해석)

  • Kim, Chan-Kyu;Jun, Yong-Du;Kim, Tae-Whan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.137-146
    • /
    • 2002
  • This paper presents a quasi-3-dimensional calculation method considering secondary flows in the impellers of diagonal flow blowers. A Quantitative estimation of the secondary flow effects is made by using secondary flow theories. In order to verify the validity of the adopted models, that is, span-wise mixing model and the tip clearance model, numerical simulations are performed for two different types of impellers of diagonal flow blowers which are designed differently. Numerical experiments are conducted for each of a constant tangential velocity type impeller, and a free vortex type impeller, both at two different flow coefficients. According to the simulation results, it was found that the present model considering span-wise mixing and tip clearance effect shows better agreements with the experimental data than those without these models in terms of the flow velocity and the angle distribution.

  • PDF

Improvement of tip analysis model for drilled shafts in cohesionless soils

  • Chen, Yit-Jin;Wu, Hao-Wei;Marcos, Maria Cecilia M.;Lin, Shiu-Shin
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.447-462
    • /
    • 2013
  • An analysis model for predicting the tip bearing capacity of drilled shafts in cohesionless soils is improved in this study. The evaluation is based on large amounts of drilled shaft load test data. Assessment on the analysis model reveals a greater variation in two coefficients, namely, the overburden bearing capacity factor ($N_q$) and the bearing capacity modifier for soil rigidity (${\zeta}_{qr}$). These factors are modified from the back analysis of drilled shaft load test results. Different effective shaft depths and interpreted capacities at various loading stages (i.e., low, middle, and high) are adopted for the back calculation. Results show that the modified bearing capacity coefficients maintain their basic relationship with soil effective friction angle ($\bar{\phi}$), in which the $N_q$ increases and ${\zeta}_{qr}$ decreases as $\bar{\phi}$ increases. The suggested effective shaft depth is limited to 15B (B = shaft diameter) for the evaluation of effective overburden pressure. Specific design recommendations for the tip bearing capacity analysis of drilled shafts in cohesionless soils are given for engineering practice.

Experimental Study on the Structure of Tip Vortex Generated by an Oscillating Rectangular Hydrofoil (진동하는 사각날개의 날개끌 와류 구조에 관한 실험적 연구)

  • Hyun, Beom-Soo;Kim, Moo-Rong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.59-67
    • /
    • 2006
  • Evolution of the unsteady three-dimensional tip vortex in the wake field of a rectangular NACA 0012 hydrofoil in pitching motion is investigated. Measurements were made in CWC using PIV. A hydrofoil has an aspect ratio of 5 with chord length of 1 Oem. Pitching angle and mean angle of attack were set to $\pm$ $5^{\circ}$ and $10^{\circ}$, respectively. Frequency of oscillation was varied from 0.1 Hz to 1 Hz in order to study the effect of unsteadiness imposed by various frequencies, which correspond to the reduced frequency of K=0.1, 0.21, 0.52 and 1.05. Reynolds number based on chord length and free-stream velocity was $30\times$$10^{4}$ Phase-averaging technique was employed. Unsteadiness and variation of the size and characteristics of tip vortex at different reduced frequency were discussed.

Study on light extraction efficiency of a side-etched LED (측면 식각된 LED의 광추출 효율에 관한 연구)

  • Noh, Y.K.;Kwon, K.Y.
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.122-129
    • /
    • 2003
  • In the case of a AIGalnP/GaP system rectangular parallelepiped high brightness LED which has side walls etched to be slanted off the vertical direction, we have studied the effects of lossy electrodes and material absorption and etching depth and angle of side walls on its light extraction efficiency. If LEDs have no electrodes, in order to obtain an 80% light extraction efficiency of a TIP (truncated inverted pyramid) LED, the side-etched LEDs should have an etching angle of 22$^{\circ}$~45$^{\circ}$ and an etching depth of 8~17% of a dice height and an absorption coefficient less than 1 $cm^{-1}$ / In case of etching depth of 16~39% of a dice height, we can obtain a 90% light extraction efficiency of a TIP LED. But when LEDs have two electrodes and no absorption loss, in order to obtain an 80% light extraction efficiency of a TIP LEBs, the side-etched LEDs should have an etching angle of 25$^{\circ}$-45$^{\circ}$ and an etching depth of 30~36% of a dice height. In case of etching depth of 57~71% of a dice height, we can obtain a 90% light extraction efficiency of a TIP LED.

ATOMIZATION PROCESS OF DIESEL FUEL SPRAY IN THE INITIAL STAGE OF INJECTION

  • KO K. N.;LEE C. S.;HUH J. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • An experimental investigation has been carried out to reveal the atomization process of the diesel fuel spray. The spray injected through a single hole nozzle was taken by a camera on the opposite side of a stroboscope for macroscopic observation or a nanolite for microscopic observation. The effect of nozzle aspect ratio was analyzed with disintegration phenomena of the diesel spray. Based on the enlarged spray photograph, atomization process was observed in detail and further the spray cone angle was measured under various ambient pressures. The result shows that atomization of diesel spray in early stage of injection is mainly progressed in the vicinity of spray periphery region except the region close to the nozzle exit and spray head region. The spray cone angle is nearly constant under the pressurized condition, while it decreases with elapsing time under the atmospheric condition.