• 제목/요약/키워드: Timing phase

Search Result 373, Processing Time 0.031 seconds

A New Frame Synchronization Scheme for Underwater Ultrasonic Image Burst Transmission System (초음파를 이용한 수중 영상 버스트 전송 시스템을 위한 새로운 프레임 동기 방안)

  • Kim, Seung-Geun;Choi, Young-Chol;Park, Jong-Won;Kim, Sea-Moon;Lim, Yong-Gon;Kim, Sang-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.336-340
    • /
    • 2003
  • The frame synchronization should be acquired before performing other data-aided receiving algorithms, such as data-aided channel equalizing, beam-forming and phase, symbol timing, and frequency synchronizing, since all of them are using preamble or training sequence to estimate the amount of error from the received signal. In this paper, we present a new frame synchronization scheme for underwater ultrasonic image burst transmission system, which computes the correlation between received symbol sequence and one CAZAC sequence, composed of the latter half of the first CAZAC sequence of preamble and the first half of the second CAZAC sequence of preamble and then compares a threshold value. If the correlation value is bigger than the threshold value, the frame detector determines that the frame synchronization is achieved at that sample.

  • PDF

Effect of EGR and Supercharging on the Diesel HCCI Combustion (디젤 예혼합 압축착화 엔진에서 배기가스 재순환과 과급의 영향)

  • Park, Se-Ik;Kook, Sang-Hoon;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.58-64
    • /
    • 2006
  • Homogeneous charge compression ignition(HCCI) combustion is an advanced technique for reducing the hazardous nitrogen oxide(NOx) and particulate matter(PM) in a diesel engine. NOx could be reduced by achieving lean homogeneous mixture resulting in combustion temperature. PM could be also reduced by eliminating fuel-rich zones which exist in conventional diesel combustion. However previous researches have reported that power-output of HCCI engine is limited by the high intensive knock and misfiring. In an attempt to extend the upper load limit for HCCI operation, supercharging in combination with Exhaust Gas Recirculation(EGR) has been applied: supercharging to increase the power density and EGR to control the combustion phase. The test was performed in a single cylinder engine operated at 1200 rpm. Boost pressures of 1.1 and 1.2 bar were applied. High EGR rates up to 45% were supplied. Most of fuel was injected at early timing to make homogeneous mixture. Small amount of fuel injection was followed near TDC to assist ignition. Results showed increasing boost pressure resulted in much higher power-output. Optimal EGR rate influenced by longer ignition delay and charge dilution simultaneously was observed.

Analysis on GNSS Spoofing signal effects using SDR receiver (SDR 수신기를 이용한 위성항법 기만신호 효과도 분석)

  • Cho, Ji-haeng
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.97-102
    • /
    • 2019
  • The GNSS(Global Navigation Satellite System) provides important information such as Position and Navigation, Timing(PNT) to various weapon systems in the military. as a result, applications that employ satellite navigation systems are increasing. therefore, a number of studies have been conducted to deceive the weapon systems that employ GNSS. GNSS spoofing denotes the transmission of counterfeit GNSS-like signals with the intention to produce a false position and time within the victim receiver. In order to deceive the victim receiver, spoofing signal should be synchronized with GNSS signal in doppler frequency and code phase, etc. In this paper, Civilian GPS L1 C/A spoofing signals have been evaluated and analyzed by SDR receiver.

Optimization of the Flip Angle and Scan Timing in Hepatobiliary Phase Imaging Using T1-Weighted, CAIPIRINHA GRE Imaging

  • Kim, Jeongjae;Kim, Bong Soo;Lee, Jeong Sub;Woo, Seung Tae;Choi, Guk Myung;Kim, Seung Hyoung;Lee, Ho Kyu;Lee, Mu Sook;Lee, Kyung Ryeol;Park, Joon Hyuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Purpose: This study was designed to optimize the flip angle (FA) and scan timing of the hepatobiliary phase (HBP) using the 3D T1-weighted, gradient-echo (GRE) imaging with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) technique on gadoxetic acid-enhanced 3T liver MR imaging. Materials and Methods: Sixty-two patients who underwent gadoxetic acid-enhanced 3T liver MR imaging were included in this study. Four 3D T1-weighted GRE imaging studies using the CAIPIRINHA technique and FAs of $9^{\circ}$ and $13^{\circ}$ were acquired during HBP at 15 and 20 min after intravenous injection of gadoxetic acid. Two abdominal radiologists, who were blinded to the FA and the timing of image acquisition, assessed the sharpness of liver edge, hepatic vessel clarity, lesion conspicuity, artifact severity, and overall image quality using a five-point scale. Quantitative analysis was performed by another radiologist to estimate the relative liver enhancement (RLE) and the signal-to-noise ratio (SNR). Statistical analyses were performed using the Wilcoxon signed rank test and one-way analysis of variance. Results: The scores of the HBP with an FA of $13^{\circ}$ during the same delayed time were significantly higher than those of the HBP with an FA of $9^{\circ}$ in all the assessment items (P < 0.01). In terms of the delay time, images at the same FA obtained with a 20-min-HBP showed better quality than those obtained with a 15-min-HBP. There was no significant difference in qualitative scores between the 20-min-HBP and the 15-min-HBP images in the non-liver cirrhosis (LC) group except for the hepatic vessel clarity score with $9^{\circ}$ FA. In the quantitative analysis, a statistically significant difference was found in the degree of RLE in the four HBP images (P = 0.012). However, in the subgroup analysis, no significant difference in RLE was found in the four HBP images in either the LC or the non-LC groups. The SNR did not differ significantly in the four HBP images. In the subgroup analysis, 20-min-HBP imaging with a $13^{\circ}$ FA showed the highest SNR value in the LC-group, whereas 15-min-HBP imaging with a $13^{\circ}$ FA showed the best value of SNR in the non-LC group. Conclusion: The use of a moderately high FA improves the image quality and lesion conspicuity on 3D, T1-weighted GRE imaging using the CAIPIRINHA technique on gadoxetic acid, 3T liver MR imaging. In patients with normal liver function, the 15-min-HBP with a $13^{\circ}$ FA represents a feasible option without a significant decrease in image quality.

Differences in the Joint Movements and Muscle Activities of Novice according to Cycle Pedal Type

  • Seo, Jeong-Woo;Kim, Dae-Hyeok;Yang, Seung-Tae;Kang, Dong-Won;Choi, Jin-Seung;Kim, Jin-Hyun;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.237-242
    • /
    • 2016
  • Objective: The purpose of this study was to compare the joint movements and muscle activities of novices according to pedal type (flat, clip, and cleat pedal). Method: Nine novice male subjects (age: $24.4{\pm}1.9years$, height: $1.77{\pm}0.05m$, weight: $72.4{\pm}7.6kg$, shoe size: $267.20{\pm}7.50mm$) participated in 3-minute, 60-rpm cycle pedaling tests with the same load and cadence. Each of the subject's saddle height was determined by the $155^{\circ}$ knee flexion angle when the pedal crank was at the 6 o'clock position ($25^{\circ}$ knee angle method). The muscle activities of the vastus lateralis, tibialis anterior, biceps femoris, and gastrocnemius medialis were compared by using electromyography during 4 pedaling phases (phase 1: $330{\sim}30^{\circ}$, phase 2: $30{\sim}150^{\circ}$, phase 3: $150{\sim}210^{\circ}$, and phase 4: $210{\sim}330^{\circ}$). Results: The knee joint movement (range of motion) and maximum dorsiflexion angle of the ankle joint with the flat pedal were larger than those of the clip and cleat pedals. The maximum plantarflexion timing with the flat and clip pedals was faster than that of the flat pedal. Electromyography revealed that the vastus lateralis muscle activity with the flat pedal was greater than that with the clip and cleat pedals. Conclusion: With the clip and cleat pedals, the joint movements were limited but the muscle activities were more effective than that with the flat pedal. The novice cannot benefit from the clip and cleat pedals regardless of their pull-up pedaling advantage. Therefore, the novice should perform the skilled pulling-up pedaling exercise in order to benefit from the clip and cleat pedals in terms of pedaling performance.

Patterns of Protein Leaching to Dispersion Medium during W/O/W Double Emulsion-Based Microencapsulation Processes (이중유제법에 근거한 미립자 제조 공정 중 단백질의 분산매로의 전이 양상)

  • Cho, Mi-Hyun;Choi, Soo-Kyoung;Sah, Hong-Kee
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.369-377
    • /
    • 2004
  • The objective of this study was to investigate the patterns of protein leaching to an external phase during an ethyl acetate-based, double emulsion microencapsulation process. An aqueous protein solution (lactoglobulin, lysozyme, or ribonuclease; $W_1$) was emulsified in ethyl acetate containing poly-d,l-lactide-co-glycolide 75:25. The $W_1/O$ emulsion was transferred to a 0.5% polyvinyl alcohol solution saturated with ethyl acetate $(W_2)$. After the double emulsion was stirred for 5, 15, 30, or 45 min, additional 0.5% polyvinyl alcohol $(W_3)$ was quickly added into the emulsion. This so-called quenching step helped convert emulsion microdroplets into microspheres. After 2-hr stirring, microspheres were collected and dried. The degree of protein leaching to $W_2$ and/or $W_3$ phase was monitored during the microencapsulation process. In a separate, comparative experiment, the profile of protein leaching to an external phase was investigated during the conventional methylene chloride-based microencapsulation process. When ethyl acetate was used as a dispersed solvent, proteins continued diffusing to the $W_2$ phase, as stirring went on. Therefore, the timing of ethyl acetate quenching played an important role in determining the degree of protein microencapsulation efficiency. For example, when quenching was peformed after 5-min stirring of the primary $W_1/O$ emulsion, the encapsulation efficiencies of lactoglobulin and ribonuclease were $55.1{\pm}4.2\;and\;45.3{\pm}7.6%$, respectively. In contrast, when quenching was carried out in 45 min, their respective encapsulation efficiencies were $39.6{\pm}3.2\;and\;29.9{\pm}11.2%$. By sharp contrast, different results were attained with the methylene-chloride based process: up to 2 hr-stirring of the primary and double emulsions, less than 5% of a protein appeared in $W_2$. Afterwards, it started to partition from $W_1\;to\;W_2/W_3$, and such a tendency was affected by the amount of PLGA75:25 used to make microspheres. Different solvent properties (e.g., water miscibility) and their effect on microsphere hardening were to be held answerable for such marked differences observed with the two microencapsulation processes.

Protein Requirement Changes According to the Treatment Application in Neurocritical Patients

  • Jungook Kim;Youngbo Shim;Yoon-Hee Choo; Hye Seon Kim; Young ran Kim; Eun Jin Ha
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.4
    • /
    • pp.451-457
    • /
    • 2024
  • Objective : Exploring protein requirements for critically ill patients has become prominent. On the other hand, considering the significant impact of coma therapy and targeted temperature management (TTM) on the brain as well as systemic metabolisms, protein requirements may plausibly be changed by treatment application. However, there is currently no research on protein requirements following the application of these treatments. Therefore, the aim of this study is to elucidate changes in patients' protein requirements during the application of TTM and coma therapy. Methods : This study is a retrospective analysis of prospectively collected data from March 2019 to May 2022. Among the patients admitted to the intensive care unit, those receiving coma therapy and TTM were included. The patient's treatment period was divided into two phases (phase 1, application and maintenance of coma therapy and TTM; phase 2, tapering and cessation of treatment). In assessing protein requirements, the urine urea nitrogen (UUN) method was employed to estimate the nitrogen balance, offering insight into protein utilization within the body. The patient's protein requirement for each phase was defined as the amount of protein required to achieve a nitrogen balance within ±5, based on the 24-hour collection of UUN. Changes in protein requirements between phases were analyzed. Results : Out of 195 patients, 107 patients with a total of 214 UUN values were included. The mean protein requirement for the entire treatment period was 1.84±0.62 g/kg/day, which is higher than the generally recommended protein supply of 1.2 g/kg/day. As the treatment was tapered, there was a statistically significant increase in the protein requirement from 1.49±0.42 to 2.18±0.60 in phase 2 (p<0.001). Conclusion : Our study revealed a total average protein requirement of 1.84±0.62 g during the treatment period, which falls within the upper range of the preexisting guidelines. Nevertheless, a notable deviation emerged when analyzing the treatment application period separately. Hence, it is recommended to incorporate considerations for the type and timing of treatment, extending beyond the current guideline, which solely accounts for the severity by disease.

Learning Curve of the Direct Anterior Approach for Hip Arthroplasty (직접전방 접근법을 통한 인공 고관절 치환술의 학습곡선)

  • Ham, Dong Hun;Chung, Woo Chull;Choi, Byeong Yeol;Choi, Jong Eun
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.2
    • /
    • pp.143-153
    • /
    • 2020
  • Purpose: To evaluate the timing of the improvement in surgical skills of the direct anterior approach for hip arthroplasty through an analysis of the clinical features and learning curve in 58 cases. Materials and Methods: From November 2016 to November 2018, 58 patients, who were divided into an early half and late half, and underwent hip arthroplasty by the direct anterior approach, were enrolled in this retrospective study. The operation time and complications (fracture, lateral femoral cutaneous nerve injury, heterotopic ossification, infection, and dislocation) were assessed using a chi-square test, paired t-test, and cumulative sum (CUSUM) test. Results: The mean operation times in total hip arthroplasty (26 cases) and bipolar hemi-arthroplasty were 132.1 minutes and 79.7 minutes, respectively, demonstrating a significant difference between the two groups. CUSUM analysis based on the results revealed breakthrough points of the operation time, decreasing to less than the mean operation time because of the 16th case in total hip arthroplasty and 14th case in bipolar hemiarthroplasty. Complications were encountered in the early phase and late phase: five cases of fractures in the early phase, no case in the late phase; eight and two cases of lateral femoral cutaneous nerve injury, respectively; three and two cases of heterotopic ossification, respectively; and one case of dislocation, one case of infection and three cases of others in the early phase. The CUSUM chart for the fracture rate during operation in the early phase revealed the following: five cases fracture (17.2%) in the early phase and no case in the late phase (0%). This highlights the learning curve and the need for monitoring the inadequacy of operation based on the complications. Conclusion: Hip arthroplasty performed by the direct anterior approach based on an anatomical understanding makes it difficult to observe the surgical field and requires a learning curve of at least 30 cases.

On Flexibility Analysis of Real-Time Control System Using Processor Utilization Function (프로세서 활용도 함수를 이용한 실시간 제어시스템 유연성 분석)

  • Chae Jung-Wha;Yoo Cheol-Jung
    • The KIPS Transactions:PartA
    • /
    • v.12A no.1 s.91
    • /
    • pp.53-58
    • /
    • 2005
  • The use of computers for control and monitoring of industrial process has expanded greatly in recent years. The computer used in such applications is shared between a certain number of time-critical control and monitor function and non time-critical batch processing job stream. Embedded systems encompass a variety of hardware and software components which perform specific function in host computer. Many embedded system must respond to external events under certain timing constraints. Failure to respond to certain events on time may either seriously degrade system performance or even result in a catastrophe. In the design of real-time embedded system, decisions made at the architectural design phase greatly affect the final implementation and performance of the system. Flexibility indicates how well a particular system architecture can tolerate with respect to satisfying real-time requirements. The degree of flexibility of real-time system architecture indicates the capability of the system to tolerate perturbations in timing related specifications. Given degree of flexibility, one may compare and rank different implementations. A system with a higher degree of flexibility is more desirable. Flexibility is also an important factor in the trade-off studies between cost and performance. In this paper, it is identified the need for flexibility function and shows that the existing real-time analysis result can be effective. This paper motivated the need for a flexibility for the efficient analysis of potential design candidates in the architectural design exploration or real time embedded system.

Location error analysis of a real time locating system in a multipath environment (다중경로 환경에서 실시간 위치추적 시스템의 위치 오차 분석)

  • Myong, Seung-Il;Mo, Sang-Hyun;Lee, Heyung-Sub;Park, Hyung-Rae;Seo, Dong-Sun
    • Journal of IKEEE
    • /
    • v.14 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • In this paper, we analyze the location accuracy of real-time locating systems (RTLS) in multipath environments, where the RTLS complies with an ISO/IEC 24730-2 international standard. RTLS readers should have an ability not only to recover the transmitted signal but also provide arrival timing information from the received signal. In the multipath environments, in general, the transmitted signal goes through both direct and indirect paths, and then it becomes some distorted form of the transmitted signal. Such multipath components have a critical effect on deciding the first arrival timing of the received signal. To analyze the location error of the RTLS in the multipath environments, we assume two multipath components without considering an additive white Gaussian noise. Through the simulation and real test results, we confirm that the location error does not occur when the time difference between two paths is more than 1.125Tc, but the location error of about 2.4m happens in case of less than 0.5Tc. In particular, we see that the resolvability of two different paths depends largely on the phase difference for the time difference of less than 1Tc.